Skip to content
2000
Volume 21, Issue 8
  • ISSN: 1573-3998
  • E-ISSN: 1875-6417

Abstract

Background

The global incidence of type 2 diabetes (T2D) persists at epidemic proportions. Early diagnosis and/or preventive efforts are critical to attenuate the multi-systemic clinical manifestation and consequent healthcare burden. Despite enormous strides in the understanding of pathophysiology and on-going therapeutic development, effectiveness and access are persistent limitations. Among the greatest challenges, the extensive research efforts have not promulgated reliable predictive biomarkers for early detection and risk assessment. The emerging fields of multi-omics combined with machine learning (ML) and augmented intelligence (AI) have profoundly impacted the capacity for predictive, preventive, and personalized medicine.

Objective

This paper explores the current challenges associated with the identification of predictive biomarkers for T2D and discusses potential actionable solutions for biomarker identification and validation.

Methods

The articles included were collected from PubMed queries. The selected topics of inquiry represented a wide range of themes in diabetes biomarker prediction and prognosis.

Results

The current criteria and cutoffs for T2D diagnosis are not optimal nor consider a myriad of contributing factors in terms of early detection. There is an opportunity to leverage AI and ML to significantly enhance the understanding of the underlying mechanisms of the disease and identify prognostic biomarkers. The innovative technologies being developed by GATC are expected to play a crucial role in this pursuit algorithm training and validation, enabling comprehensive and in-depth analysis of complex biological systems.

Conclusion

GATC is an emerging leader guiding the establishment of a systems approach towards research and predictive, personalized medicine. The integration of these technologies with clinical data can contribute to a more comprehensive understanding of T2D, paving the way for precision medicine approaches and improved patient outcomes.

Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998276990240117113408
2024-02-01
2025-04-04
Loading full text...

Full text loading...

References

  1. ZhengY. LeyS.H. HuF.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications.Nat. Rev. Endocrinol.2018142889810.1038/nrendo.2017.15129219149
    [Google Scholar]
  2. EvansM. ChandramouliA.S. FaurbyM. MatthiessenK.S. MogensenP.B. VermaS. Healthcare costs and hospitalizations in US patients with type 2 diabetes and cardiovascular disease: A retrospective database study ( OFFSET ).Diabetes Obes. Metab.20222471300130910.1111/dom.1470335504854
    [Google Scholar]
  3. OgurtsovaK. GuariguataL. BarengoN.C. RuizP.L.D. SacreJ.W. KarurangaS. SunH. BoykoE.J. MaglianoD.J. IDF diabetes Atlas: Global estimates of undiagnosed diabetes in adults for 2021.Diabetes Res. Clin. Pract.202218310911810.1016/j.diabres.2021.10911834883189
    [Google Scholar]
  4. Diabetes statistics.Available from: https://www.niddk.nih.gov/health-information/health-statistics/diabetes-statistics
  5. Classification and diagnosis of diabetes: Standards of medical care in diabetes—2019.Diabetes Care201942Suppl. 1S13S2810.2337/dc19‑S00230559228
    [Google Scholar]
  6. TuckerLA Limited agreement between classifications of diabetes and prediabetes resulting from the OGTT, Hemoglobin A1c, and fasting glucose tests in 7412 U.S. J Clin Med202097220710.3390/jcm9072207
    [Google Scholar]
  7. KhoslaL. BhatS. FullingtonL.A. Horlyck-RomanovskyM.F. HbA 1c performance in african descent populations in the united states with normal glucose tolerance, prediabetes, or diabetes: A scoping review.Prev. Chronic Dis.20211820036510.5888/pcd18.20036533705304
    [Google Scholar]
  8. Gomez-PeraltaF. ChoudharyP. CossonE. IraceC. Rami-MerharB. SeiboldA. Understanding the clinical implications of differences between glucose management indicator and glycated haemoglobin.Diabetes Obes. Metab.202224459960810.1111/dom.1463834984825
    [Google Scholar]
  9. WeykampC. HbA1c: A review of analytical and clinical aspects.Ann. Lab. Med.201333639340010.3343/alm.2013.33.6.39324205486
    [Google Scholar]
  10. VigerskyR.A. Going beyond HbA1c to understand the benefits of advanced diabetes therapies.J. Diabetes2019111233110.1111/1753‑0407.1284630151979
    [Google Scholar]
  11. ChintagariN.R. JanaS. AlayashA.I. Oxidized ferric and ferryl forms of hemoglobin trigger mitochondrial dysfunction and injury in alveolar type I cells.Am. J. Respir. Cell Mol. Biol.201655228829810.1165/rcmb.2015‑0197OC26974230
    [Google Scholar]
  12. PeruginiR.A. MalkaniS. Remission of type 2 diabetes mellitus following bariatric surgery: Review of mechanisms and presentation of the concept of ‘reversibility’.Curr. Opin. Endocrinol. Diabetes Obes.201118211912810.1097/MED.0b013e3283446c1f21522001
    [Google Scholar]
  13. MottalibA. SakrM. ShehabeldinM. HamdyO. Diabetes Remission after nonsurgical intensive lifestyle intervention in obese patients with type 2 diabetes.J. Diabetes Res.201520151410.1155/2015/46870426114120
    [Google Scholar]
  14. AzarovaI. PolonikovA. KlyosovaE. Molecular genetics of abnormal redox homeostasis in type 2 diabetes mellitus.Int. J. Mol. Sci.2023245473810.3390/ijms2405473836902173
    [Google Scholar]
  15. BerezinA.E. Prognostication of clinical outcomes in diabetes mellitus: Emerging role of cardiac biomarkers.Diabetes Metab. Syndr.2019132995100310.1016/j.dsx.2019.01.01831336558
    [Google Scholar]
  16. WiggerL. BarovicM. BrunnerA.D. MarzettaF. SchönigerE. MehlF. KipkeN. FriedlandD. BurdetF. KesslerC. LescheM. ThorensB. BonifacioE. Legido-QuigleyC. Barbier Saint HilaireP. DeleriveP. DahlA. KloseC. GerlM.J. SimonsK. AustD. WeitzJ. DistlerM. SchulteA.M. MannM. IbbersonM. SolimenaM. Multi-omics profiling of living human pancreatic islet donors reveals heterogeneous beta cell trajectories towards type 2 diabetes.Nat. Metab.2021371017103110.1038/s42255‑021‑00420‑934183850
    [Google Scholar]
  17. SliekerR.C. DonnellyL.A. AkalestouE. Lopez-NoriegaL. MelhemR. GüneşA. Abou AzarF. EfanovA. GeorgiadouE. Muniangi-MuhituH. SheikhM. GiordanoG.N. ÅkerlundM. AhlqvistE. AliA. BanasikK. BrunakS. BarovicM. BoulandG.A. BurdetF. CanouilM. DraganI. EldersP.J.M. FernandezC. FestaA. FitipaldiH. FroguelP. GudmundsdottirV. GudnasonV. GerlM.J. van der HeijdenA.A. JenningsL.L. HansenM.K. KimM. LeclercI. KloseC. KuznetsovD. Mansour AlyD. MehlF. MarekD. MelanderO. NiknejadA. OttossonF. PavoI. DuffinK. SyedS.K. ShawJ.L. CabreraO. PullenT.J. SimonsK. SolimenaM. SuvitaivalT. WretlindA. RossingP. LyssenkoV. Legido QuigleyC. GroopL. ThorensB. FranksP.W. LimG.E. EstallJ. IbbersonM. BeulensJ.W.J. ’t HartL.M. PearsonE.R. RutterG.A. Identification of biomarkers for glycaemic deterioration in type 2 diabetes.Nat. Commun.2023141253310.1038/s41467‑023‑38148‑737137910
    [Google Scholar]
  18. MoinA.S.M. SathyapalanT. AtkinS.L. ButlerA.E. Diagnostic and prognostic protein biomarkers of β-cell function in type 2 diabetes and their modulation with glucose normalization.Metabolites202212319610.3390/metabo1203019635323639
    [Google Scholar]
  19. ZhangY. DingX. HuaB. LiuQ. GaoH. ChenH. ZhaoX.Q. LiW. LiH. Predictive effect of triglyceride‑glucose index on clinical events in patients with type 2 diabetes mellitus and acute myocardial infarction: Results from an observational cohort study in China.Cardiovasc. Diabetol.20212014310.1186/s12933‑021‑01236‑333573649
    [Google Scholar]
  20. SuW.Y. ChenS.C. HuangY.T. HuangJ.C. WuP.Y. HsuW.H. LeeM.Y. Comparison of the effects of fasting glucose, hemoglobin A1c, and triglyceride–glucose index on cardiovascular events in type 2 diabetes mellitus.Nutrients20191111283810.3390/nu1111283831752391
    [Google Scholar]
  21. CheemaA.K. KaurP. FadelA. YounesN. ZirieM. RizkN.M. Integrated datasets of proteomic and metabolomic biomarkers to predict its impacts on comorbidities of type 2 diabetes mellitus.Diabetes Metab. Syndr. Obes.2020132409243110.2147/DMSO.S24443232753925
    [Google Scholar]
  22. AlurV. RajuV. VastradB. VastradC. KavatagimathS. KotturshettiS. Bioinformatics analysis of next generation sequencing data identifies molecular biomarkers associated with type 2 diabetes mellitus.Clin. Med. Insights Endocrinol. Diabetes20231610.1177/1179551423115563536844983
    [Google Scholar]
  23. ReslM. VilaG. HeinzlM. LugerA. NeuholdS. PragerR. WurmR. HülsmannM. ClodiM. Changes in the prognostic values of modern cardiovascular biomarkers in relation to duration of diabetes mellitus.J. Diabetes Complications202135910799010.1016/j.jdiacomp.2021.10799034294516
    [Google Scholar]
  24. BaiY. FangY. MingJ. WeiH. ZhangP. YanJ. DuY. LiQ. YuX. GuoM. LiangS. HuR. JiQ. Serum glycated albumin as good biomarker for predicting type 2 diabetes: A retrospective cohort study of china national diabetes and metabolic disorders survey.Diabetes Metab. Res. Rev.2022381e347710.1002/dmrr.347734041844
    [Google Scholar]
  25. SchmidtM.I. BraccoP.A. YudkinJ.S. BensenorI.M. GriepR.H. BarretoS.M. CastilhosC.D. DuncanB.B. Intermediate hyperglycaemia to predict progression to type 2 diabetes (ELSA-Brasil): An occupational cohort study in Brazil.Lancet Diabetes Endocrinol.20197426727710.1016/S2213‑8587(19)30058‑030803929
    [Google Scholar]
  26. Morgan-BenitaJ. Sánchez-ReynaA.G. Espino-SalinasC.H. Oropeza-ValdezJ.J. Luna-GarcíaH. Galván-TejadaC.E. Galván-TejadaJ.I. Gamboa-RosalesH. Enciso-MorenoJ.A. Celaya-PadillaJ. Metabolomic selection in the progression of type 2 diabetes mellitus: A genetic algorithm approach.Diagnostics20221211280310.3390/diagnostics1211280336428864
    [Google Scholar]
  27. BanimfregB.H. ShamaylehA. AlshraidehH. SemreenM.H. SoaresN.C. Untargeted approach to investigating the metabolomics profile of type 2 diabetes emiratis.J. Proteomics202226910471810.1016/j.jprot.2022.10471836100153
    [Google Scholar]
  28. UngurianuA. ZanfirescuA. GrădinaruD. Ionescu-TîrgovișteC. Dănciulescu MiulescuR. MarginăD. Interleukins and redox impairment in type 2 diabetes mellitus: Mini-review and pilot study.Curr. Med. Res. Opin.202238451152210.1080/03007995.2022.203304935067142
    [Google Scholar]
  29. Kapłon-CieślickaA. TymińskaA. RosiakM. OzierańskiK. PellerM. EyiletenC. KondrackaA. PordzikJ. Mirowska-GuzelD. OpolskiG. PostułaM. FilipiakK.J. Resistin is a prognostic factor for death in type 2 diabetes.Diabetes Metab. Res. Rev.2019352e309810.1002/dmrr.309830447052
    [Google Scholar]
  30. Garcia-CarreteroR. Vigil-MedinaL. Barquero-PerezO. The use of machine learning techniques to determine the predictive value of inflammatory biomarkers in the development of type 2 diabetes mellitus.Metab. Syndr. Relat. Disord.202119424024810.1089/met.2020.013933596118
    [Google Scholar]
  31. EhtewishH. ArredouaniA. El-AgnafO. Diagnostic, prognostic, and mechanistic biomarkers of diabetes mellitus-associated cognitive decline.Int. J. Mol. Sci.20222311614410.3390/ijms2311614435682821
    [Google Scholar]
  32. KhanS.R. MohanH. LiuY. BatchuluunB. GohilH. Al RijjalD. ManialawyY. CoxB.J. GundersonE.P. WheelerM.B. The discovery of novel predictive biomarkers and early-stage pathophysiology for the transition from gestational diabetes to type 2 diabetes.Diabetologia201962468770310.1007/s00125‑018‑4800‑230645667
    [Google Scholar]
  33. KhanijouV. ZafariN. CoughlanM.T. MacIsaacR.J. EkinciE.I. Review of potential biomarkers of inflammation and kidney injury in diabetic kidney disease.Diabetes Metab. Res. Rev.2022386e355610.1002/dmrr.355635708187
    [Google Scholar]
  34. VijayakumarP. NelsonR.G. HansonR.L. KnowlerW.C. SinhaM. HbA1c and the prediction of type 2 diabetes in children and adults.Diabetes Care2017401162110.2337/dc16‑135827810987
    [Google Scholar]
  35. EmeryK.A. RobinsJ. SalyerJ. Thurby-HayL. DjiraG. Type 2 diabetes self-management variables and predictors.Clin. Nurs. Res.20223171250126210.1177/1054773821106732234961341
    [Google Scholar]
  36. LiZ. HanD. QiT. DengJ. LiL. GaoC. GaoW. ChenH. ZhangL. ChenW. Hemoglobin A1c in type 2 diabetes mellitus patients with preserved ejection fraction is an independent predictor of left ventricular myocardial deformation and tissue abnormalities.BMC Cardiovasc. Disord.20232314910.1186/s12872‑023‑03082‑536698087
    [Google Scholar]
  37. AjoolabadyA. LiuS. KlionskyD.J. LipG.Y.H. TuomilehtoJ. KavalakattS. PereiraD.M. SamaliA. RenJ. ER stress in obesity pathogenesis and management.Trends Pharmacol. Sci.20224329710910.1016/j.tips.2021.11.01134893351
    [Google Scholar]
  38. SunJ. CuiJ. HeQ. ChenZ. ArvanP. LiuM. Proinsulin misfolding and endoplasmic reticulum stress during the development and progression of diabetes.Mol. Aspects Med.20154210511810.1016/j.mam.2015.01.00125579745
    [Google Scholar]
  39. ArunagiriA. HaatajaL. CunninghamC.N. ShresthaN. TsaiB. QiL. LiuM. ArvanP. Misfolded proinsulin in the endoplasmic reticulum during development of beta cell failure in diabetes.Ann. N. Y. Acad. Sci.20181418151910.1111/nyas.1353129377149
    [Google Scholar]
  40. Rodriguez-CalvoT. ChenY.C. VerchereC.B. HaatajaL. ArvanP. LeeteP. RichardsonS.J. MorganN.G. QianW.J. PuglieseA. AtkinsonM. Evans-MolinaC. SimsE.K. Altered β-cell prohormone processing and secretion in type 1 diabetes.Diabetes20217051038105010.2337/dbi20‑003433947721
    [Google Scholar]
  41. SokootiS. DamW.A. Szili-TorokT. GloerichJ. van GoolA.J. PostA. de BorstM.H. GansevoortR.T. HeerspinkH.J.L. DullaartR.P.F. BakkerS.J.L. Fasting proinsulin independently predicts incident type 2 diabetes in the general population.J. Pers. Med.2022127113110.3390/jpm1207113135887628
    [Google Scholar]
  42. TranD.T. PottekatA. LeeK. RaghunathanM. LoguercioS. MirS.A. PatonA.W. PatonJ.C. ArvanP. KaufmanR.J. Itkin-AnsariP. Inflammatory cytokines rewire the proinsulin interaction network in human islets.J. Clin. Endocrinol. Metab.2022107113100311010.1210/clinem/dgac49336017587
    [Google Scholar]
  43. RohliK.E. BoyerC.K. BlomS.E. StephensS.B. Nutrient regulation of pancreatic islet β-cell secretory capacity and insulin production.Biomolecules202212233510.3390/biom1202033535204835
    [Google Scholar]
  44. ThenC. GarC. ThorandB. HuthC. ThenH. MeisingerC. HeierM. PetersA. KoenigW. RathmannW. LechnerA. SeisslerJ. Proinsulin to insulin ratio is associated with incident type 2 diabetes but not with vascular complications in the KORA F4/FF4 study.BMJ Open Diabetes Res. Care202081e00142510.1136/bmjdrc‑2020‑00142532423965
    [Google Scholar]
  45. WuC. BornéY. GaoR. López RodriguezM. RoellW.C. WilsonJ.M. RegmiA. LuanC. AlyD.M. PeterA. MachannJ. StaigerH. FritscheA. BirkenfeldA.L. TaoR. WagnerR. CanouilM. HongM.G. SchwenkJ.M. AhlqvistE. KaikkonenM.U. NilssonP. ShoreA.C. KhanF. NataliA. MelanderO. Orho-MelanderM. NilssonJ. HäringH.U. RenströmE. WollheimC.B. EngströmG. WengJ. PearsonE.R. FranksP.W. WhiteM.F. DuffinK.L. VaagA.A. LaaksoM. StefanN. GroopL. De MarinisY. Elevated circulating follistatin associates with an increased risk of type 2 diabetes.Nat. Commun.2021121648610.1038/s41467‑021‑26536‑w34759311
    [Google Scholar]
  46. HedgerM.P. WinnallW.R. PhillipsD.J. de KretserD.M. The regulation and functions of activin and follistatin in inflammation and immunity.Vitam. Horm.20118525529710.1016/B978‑0‑12‑385961‑7.00013‑521353885
    [Google Scholar]
  47. Lorenzo-AlmorósA. HangT. PeiróC. Soriano-GuillénL. EgidoJ. TuñónJ. LorenzoÓ. Predictive and diagnostic biomarkers for gestational diabetes and its associated metabolic and cardiovascular diseases.Cardiovasc. Diabetol.201918114010.1186/s12933‑019‑0935‑931666083
    [Google Scholar]
  48. NäfS. EscoteX. BallesterosM. YañezR.E. Simón-MuelaI. GilP. AlbaigesG. VendrellJ. MegiaA. Serum activin A and follistatin levels in gestational diabetes and the association of the Activin A-Follistatin system with anthropometric parameters in offspring.PLoS One201494e9217510.1371/journal.pone.009217524763182
    [Google Scholar]
  49. CalleM.C. FernandezM.L. Inflammation and type 2 diabetes.Diabetes Metab.201238318319110.1016/j.diabet.2011.11.00622252015
    [Google Scholar]
  50. SharifS. Van der GraafY. CramerM.J. KapelleL.J. de BorstG.J. VisserenF.L.J. WesterinkJ. van PetersenR. DintherB.G.F. AlgraA. van der GraafY. GrobbeeD.E. RuttenG.E.H.M. VisserenF.L.J. de BorstG.J. KappelleL.J. LeinerT. NathoeH.M. Low-grade inflammation as a risk factor for cardiovascular events and all-cause mortality in patients with type 2 diabetes.Cardiovasc. Diabetol.202120122010.1186/s12933‑021‑01409‑034753497
    [Google Scholar]
  51. BanerjeeM. SaxenaM. Interleukin-1 (IL-1) family of cytokines: Role in type 2 diabetes.Clin. Chim. Acta201241315-161163117010.1016/j.cca.2012.03.02122521751
    [Google Scholar]
  52. SuriS. MitraP. AbhilashaA. SaxenaI. GargM.K. BohraG.K. SharmaP. Role of interleukin-2 and interleukin-18 in newly diagnosed type 2 diabetes mellitus.J. Basic Clin. Physiol. Pharmacol.202233218519010.1515/jbcpp‑2020‑027233711216
    [Google Scholar]
  53. AkashM.S.H. ShenQ. RehmanK. ChenS. Interleukin-1 receptor antagonist: A new therapy for type 2 diabetes mellitus.J. Pharm. Sci.201210151647165810.1002/jps.2305722271340
    [Google Scholar]
  54. VolarevicV. Al-QahtaniA. ArsenijevicN. PajovicS. LukicM.L. Interleukin-1 receptor antagonist (IL-1Ra) and IL-1Ra producing mesenchymal stem cells as modulators of diabetogenesis.Autoimmunity201043425526310.3109/0891693090330564119845478
    [Google Scholar]
  55. DasU.N. Arachidonic acid and lipoxin A4 as possible endogenous anti-diabetic molecules.Prostaglandins Leukot. Essent. Fatty Acids201388320121010.1016/j.plefa.2012.11.00923295193
    [Google Scholar]
  56. RepossiG. DasU.N. EynardA.R. Molecular basis of the beneficial actions of resveratrol.Arch. Med. Res.202051210511410.1016/j.arcmed.2020.01.01032111491
    [Google Scholar]
  57. FreireM.O. DalliJ. SerhanC.N. Van DykeT.E. Neutrophil resolvin E1 receptor expression and function in type 2 diabetes.J. Immunol.2017198271872810.4049/jimmunol.160154327994073
    [Google Scholar]
  58. Aydin OzgurB. CoskunpinarE. Bilgic GaziogluS. YilmazA. Musteri OltuluY. CakmakogluB. DenizG. GurolA.O. YilmazM.T. Effects of complement regulators and chemokine receptors in type 2 diabetes.Immunol. Invest.202150547849110.1080/08820139.2020.177802232611246
    [Google Scholar]
  59. YangQ. VijayakumarA. KahnB.B. Metabolites as regulators of insulin sensitivity and metabolism.Nat. Rev. Mol. Cell Biol.2018191065467210.1038/s41580‑018‑0044‑830104701
    [Google Scholar]
/content/journals/cdr/10.2174/0115733998276990240117113408
Loading
/content/journals/cdr/10.2174/0115733998276990240117113408
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test