Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-3998
  • E-ISSN: 1875-6417

Abstract

The Central nervous system (CNS) is the prime regulator of signaling pathways whose function includes regulation of food intake (consumption), energy expenditure, and other metabolic responses like glycolysis, gluconeogenesis, fatty acid oxidation, and thermogenesis that have been implicated in chronic inflammatory disorders. Type 2 diabetes mellitus (T2DM) and obesity are two metabolic disorders that are linked together and have become an epidemic worldwide, thus raising significant public health concerns. Fibroblast growth factor 21 (FGF21) is an endocrine hormone with pleiotropic metabolic effects that increase insulin sensitivity and energy expenditure by elevating thermogenesis in brown or beige adipocytes, thus reducing body weight and sugar intake. In contrast, during starvation conditions, FGF21 induces its expression in the liver to initiate glucose homeostasis. Insulin resistance is one of the main anomalies caused by impaired FGF21 signaling, which also causes abnormal regulation of other signaling pathways. Tumor necrosis factor alpha (TNF-α), the cytokine released by adipocytes and inflammatory cells in response to chronic inflammation, is regarded major factor that reduces the expression of FGF21 and modulates underlying insulin resistance that causes imbalanced glucose homeostasis. This review aims to shed light on the mechanisms underlying the development of insulin resistance in obese individuals as well as the fundamental flaw in type 2 diabetes, which is malfunctioning obese adipose tissue.

Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998265915231116043813
2024-04-26
2025-01-18
Loading full text...

Full text loading...

References

  1. HardyO.T. CzechM.P. CorveraS. What causes the insulin resistance underlying obesity?Curr. Opin. Endocrinol. Diabetes Obes.2012192818710.1097/MED.0b013e3283514e1322327367
    [Google Scholar]
  2. ChooiY.C. DingC. MagkosF. The epidemiology of obesity.Metabolism20199261010.1016/j.metabol.2018.09.00530253139
    [Google Scholar]
  3. EsserN. Legrand-PoelsS. PietteJ. ScheenA.J. PaquotN. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes.Diabetes Res. Clin. Pract.2014105214115010.1016/j.diabres.2014.04.00624798950
    [Google Scholar]
  4. KharroubiA.T. DarwishH.M. Diabetes mellitus: The epidemic of the century.World J. Diabetes20156685086710.4239/wjd.v6.i6.85026131326
    [Google Scholar]
  5. CaiX. SheM. XuM. GLP-1 treatment protects endothelial cells from oxidative stress-induced autophagy and endothelial dysfunction.Int. J. Biol. Sci.201814121696170810.7150/ijbs.2777430416384
    [Google Scholar]
  6. Diabetes Atlas 2021. https://diabetesatlas.org/idfawp/resource files/2021/07/IDF_Atlas_10th_Edition_2021.pdf
  7. NdisangJ.F. VannacciA. RastogiS. Insulin resistance, type 1 and Type 2 Diabetes, and related complications.J. Diabetes Res.20172017147829410.1155/2017/1478294
    [Google Scholar]
  8. TanS.Y. Mei WongJ.L. SimY.J. Type 1 and 2 diabetes mellitus: A review on current treatment approach and gene therapy as potential intervention.Diabetes Metab. Syndr.201913136437210.1016/j.dsx.2018.10.00830641727
    [Google Scholar]
  9. JanoutováJ. MachaczkaO. ZatloukalováA. JanoutV. Is Alzheimer’s disease a type 3 diabetes? A review.Cent. Eur. J. Public Health202230313914310.21101/cejph.a723836239360
    [Google Scholar]
  10. GregoryG.A. RobinsonT.I.G. LinklaterS.E. Global incidence, prevalence, and mortality of type 1 diabetes in 2021 with projection to 2040: a modelling study.Lancet Diabetes Endocrinol.2022101074176010.1016/S2213‑8587(22)00218‑236113507
    [Google Scholar]
  11. RuzeR. LiuT. ZouX. Obesity and type 2 diabetes mellitus: connections in epidemiology, pathogenesis, and treatments.Front. Endocrinol.202314116152110.3389/fendo.2023.1161521
    [Google Scholar]
  12. DaoL. ChoiS. FreebyM. Type 2 diabetes mellitus and cognitive function: Understanding the connections.Curr. Opin. Endocrinol. Diabetes Obes.202330171310.1097/MED.000000000000078336385094
    [Google Scholar]
  13. LotfyM. AdeghateJ. KalaszH. SinghJ. AdeghateE. Chronic complications of diabetes mellitus: A mini review.Curr. Diabetes Rev.201613131010.2174/157339981266615101610162226472574
    [Google Scholar]
  14. SunH. SaeediP. KarurangaS. IDF diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045.Diabetes Res. Clin. Pract.202218310911910.1016/j.diabres.2021.10911934879977
    [Google Scholar]
  15. ThunanderM. PeterssonC. JonzonK. Incidence of type 1 and type 2 diabetes in adults and children in Kronoberg, Sweden.Diabetes Res. Clin. Pract.200882224725510.1016/j.diabres.2008.07.02218804305
    [Google Scholar]
  16. DahlénA.D. DashiG. MaslovI. Trends in antidiabetic drug discovery: FDA approved drugs, new drugs in clinical trials and global sales.Front. Pharmacol.202212807548
    [Google Scholar]
  17. TeramiN. OgawaD. TachibanaH. Long-term treatment with the sodium glucose cotransporter 2 inhibitor, dapagliflozin, ameliorates glucose homeostasis and diabetic nephropathy in db/db mice.PLoS One201496e10077710.1371/journal.pone.010077724960177
    [Google Scholar]
  18. FeingoldK.R. AnawaltB. BlackmanM.R. Oral and injectable (Noninsulin) pharmacological agents for type 2 diabetes.In: South Dartmouth: MDText.com, Inc.2000
    [Google Scholar]
  19. DaiY. DaiD. WangX. DingZ. LiC. MehtaJ.L. GLP-1 agonists inhibit ox-LDL uptake in macrophages by activating protein kinase A.J. Cardiovasc. Pharmacol.2014641475210.1097/FJC.000000000000008724705175
    [Google Scholar]
  20. BunckM.C. CornérA. EliassonB. One-year treatment with exenatide vs. Insulin Glargine: Effects on postprandial glycemia, lipid profiles, and oxidative stress.Atherosclerosis2010212122322910.1016/j.atherosclerosis.2010.04.02420494360
    [Google Scholar]
  21. JinT. WengJ. Hepatic functions of GLP-1 and its based drugs: Current disputes and perspectives.Am. J. Physiol. Endocrinol. Metab.20163113E620E62710.1152/ajpendo.00069.201627507553
    [Google Scholar]
  22. McCarthyM.I. ZegginiE. Genome-wide association studies in type 2 diabetes.Curr. Diab. Rep.20099216417110.1007/s11892‑009‑0027‑419323962
    [Google Scholar]
  23. ValerónP.F. de Pablos-VelascoP.L. Limitaciones de los fármacos dependientes de insulina para el tratamiento de la diabetes mellitus tipo 2.Med Clin20131412202510.1016/S0025‑7753(13)70059‑924444520
    [Google Scholar]
  24. KharitonenkovA. DiMarchiR. Fibroblast growth factor 21 night watch: Advances and uncertainties in the field.J. Intern. Med.2017281323324610.1111/joim.1258027878865
    [Google Scholar]
  25. HaasJ.T. BiddingerS.B. Dissecting the role of insulin resistance in the metabolic syndrome.Curr. Opin. Lipidol.200920320621010.1097/MOL.0b013e32832b202419421055
    [Google Scholar]
  26. FisherF.M. Maratos-FlierE. Understanding the physiology of FGF21.Annu. Rev. Physiol.201678122324110.1146/annurev‑physiol‑021115‑10533926654352
    [Google Scholar]
  27. BeenkenA. MohammadiM. The FGF family: Biology, pathophysiology and therapy.Nat. Rev. Drug Discov.20098323525310.1038/nrd279219247306
    [Google Scholar]
  28. LiuY. LiuY. DengJ. LiW. NieX. Fibroblast growth factor in diabetic foot ulcer: Progress and therapeutic prospects.Front. Endocrinol.20211274486810.3389/fendo.2021.744868
    [Google Scholar]
  29. GoetzR. BeenkenA. IbrahimiO.A. Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members.Mol. Cell. Biol.20072793417342810.1128/MCB.02249‑0617339340
    [Google Scholar]
  30. JonesS.A. Physiology of FGF15/19.Adv. Exp. Med. Biol.201272817118210.1007/978‑1‑4614‑0887‑1_1122396169
    [Google Scholar]
  31. WuY. RenZ. ZhuS. Sulforaphane ameliorates non-alcoholic fatty liver disease in mice by promoting FGF21/FGFR1 signaling pathway.Acta Pharmacol. Sin.20224361473148310.1038/s41401‑021‑00786‑234654875
    [Google Scholar]
  32. NishimuraT. NakatakeY. KonishiM. ItohN. Identification of a novel FGF, FGF-21, preferentially expressed in the liver.Biochim. Biophys. Acta Gene Struct. Expr.20001492120320610.1016/S0167‑4781(00)00067‑110858549
    [Google Scholar]
  33. SayersE.W. BoltonE.E. BristerJ.R. Database resources of the national center for biotechnology information.Nucleic Acids Res.202250D1D20D2610.1093/nar/gkab111234850941
    [Google Scholar]
  34. ItohN. OrnitzD.M. Functional evolutionary history of the mouseFgf gene family.Dev. Dyn.20082371182710.1002/dvdy.2138818058912
    [Google Scholar]
  35. StaigerH. KeuperM. BertiL. Hrabě de AngelisM. HäringH.U. Fibroblast growth factor 21—metabolic role in mice and men.Endocr. Rev.201738546848810.1210/er.2017‑0001628938407
    [Google Scholar]
  36. XuJ. LloydD.J. HaleC. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice.Diabetes200958125025910.2337/db08‑039218840786
    [Google Scholar]
  37. KanehisaM. GotoS. KEGG: kyoto encyclopedia of genes and genomes.Nucleic Acids Res.2000281273010.1093/nar/28.1.2710592173
    [Google Scholar]
  38. Díaz-DelfínJ. HondaresE. IglesiasR. GiraltM. CaellesC. VillarroyaF. TNF-α represses β-Klotho expression and impairs FGF21 action in adipose cells: involvement of JNK1 in the FGF21 pathway.Endocrinology201215394238424510.1210/en.2012‑119322778214
    [Google Scholar]
  39. DaiH. HuW. ZhangL. FGF21 facilitates autophagy in prostate cancer cells by inhibiting the PI3K-Akt-mTOR signaling pathway.Cell Death Dis.202112430310.1038/s41419‑021‑03588‑w
    [Google Scholar]
  40. HarrisT.E. ChiA. ShabanowitzJ. HuntD.F. RhoadsR.E. LawrenceJ.C.Jr mTOR-dependent stimulation of the association of eIF4G and eIF3 by insulin.EMBO J.20062581659166810.1038/sj.emboj.760104716541103
    [Google Scholar]
  41. SzczepańskaE. Gietka-CzernelM. FGF21: A Novel Regulator of Glucose and Lipid Metabolism and Whole-Body Energy Balance.Horm. Metab. Res.202254420321110.1055/a‑1778‑415935413740
    [Google Scholar]
  42. LiangQ. ZhongL. ZhangJ. FGF21 maintains glucose homeostasis by mediating the cross talk between liver and brain during pro-longed fasting.Diabetes201463124064407510.2337/db14‑054125024372
    [Google Scholar]
  43. RuiL. Energy metabolism in the liver.Compr. Physiol.20144117719710.1002/cphy.c13002424692138
    [Google Scholar]
  44. ChristofidesA. KonstantinidouE. JaniC. BoussiotisV.A. The role of peroxisome proliferator-activated receptors (PPAR) in immune responses.Metabolism202111415433810.1016/j.metabol.2020.15433832791172
    [Google Scholar]
  45. ChristodoulidesC. DysonP. SprecherD. TsintzasK. KarpeF. Circulating fibroblast growth factor 21 is induced by peroxisome proliferator-activated receptor agonists but not ketosis in man.J. Clin. Endocrinol. Metab.20099493594360110.1210/jc.2009‑011119531592
    [Google Scholar]
  46. ChawlaA. SchwarzE.J. DimaculanganD.D. LazarM.A. Peroxisome proliferator-activated receptor (PPAR) gamma: Adiposepredominant expression and induction early in adipocyte differentiation.Endocrinology1994135279880010.1210/endo.135.2.80338308033830
    [Google Scholar]
  47. BadmanM.K. PissiosP. KennedyA.R. KoukosG. FlierJ.S. Maratos-FlierE. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states.Cell Metab.20075642643710.1016/j.cmet.2007.05.00217550778
    [Google Scholar]
  48. KerstenS. SeydouxJ. PetersJ.M. GonzalezF.J. DesvergneB. WahliW. Peroxisome proliferator–activated receptor α mediates the adaptive response to fasting.J. Clin. Invest.1999103111489149810.1172/JCI622310359558
    [Google Scholar]
  49. WagnerK.D. WagnerN. Peroxisome proliferator-activated receptor beta/delta (PPARβ/δ) acts as regulator of metabolism linked to multiple cellular functions.Pharmacol. Ther.2010125342343510.1016/j.pharmthera.2009.12.00120026355
    [Google Scholar]
  50. PicardF. AuwerxJ. PPARγ and G Lucose H Omeostasis.Annu. Rev. Nutr.200222116719710.1146/annurev.nutr.22.010402.10280812055342
    [Google Scholar]
  51. DutchakP.A. KatafuchiT. BookoutA.L. Fibroblast growth factor-21 regulates PPARγ activity and the antidiabetic actions of thiazolidinediones.Cell2012148355656710.1016/j.cell.2011.11.06222304921
    [Google Scholar]
  52. AghanooriM.R. SmithD.R. Shariati-IevariS. Insulin-like growth factor-1 activates AMPK to augment mitochondrial function and correct neuronal metabolism in sensory neurons in type 1 diabetes.Mol. Metab.20192014916510.1016/j.molmet.2018.11.00830545741
    [Google Scholar]
  53. KheraR. MehanS. KumarS. SethiP. BhallaS. PrajapatiA. Role of JAK-STAT and PPAR-Gamma signalling modulators in the prevention of autism and neurological dysfunctions.Mol. Neurobiol.20225963888391210.1007/s12035‑022‑02819‑135437700
    [Google Scholar]
  54. KubotaN. YanoW. KubotaT. Adiponectin stimulates AMPactivated protein kinase in the hypothalamus and increases food intake.Cell Metab.200761556810.1016/j.cmet.2007.06.00317618856
    [Google Scholar]
  55. PellegrinelliV. PeirceV.J. HowardL. Adipocyte-secreted BMP8b mediates adrenergic-induced remodeling of the neurovascular network in adipose tissue.Nat. Commun.201891497410.1038/s41467‑018‑07453‑x30478315
    [Google Scholar]
  56. MinardA.Y. TanS.X. YangP. mTORC1 is a major regulatory node in the FGF21 signaling network in adipocytes.Cell reports2016171293610.1016/j.celrep.2016.08.086
    [Google Scholar]
  57. OgawaY. KurosuH. YamamotoM. βKlotho is required for metabolic activity of fibroblast growth factor 21.Proc. Natl. Acad. Sci. USA2007104187432743710.1073/pnas.070160010417452648
    [Google Scholar]
  58. SuX. KongY. PengD. Fibroblast growth factor 21 in lipid metabolism and non-alcoholic fatty liver disease.Clin. Chim. Acta2019498303710.1016/j.cca.2019.08.00531419414
    [Google Scholar]
  59. GuilhermeA. VirbasiusJ.V. PuriV. CzechM.P. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes.Nat. Rev. Mol. Cell Biol.20089536737710.1038/nrm239118401346
    [Google Scholar]
  60. PetersenM.C. ShulmanG.I. Mechanisms of insulin action and insulin resistance.Physiol. Rev.20189842133222310.1152/physrev.00063.201730067154
    [Google Scholar]
  61. ChengL. WangJ. DaiH. Brown and beige adipose tissue: A novel therapeutic strategy for obesity and type 2 diabetes mellitus.Adipocyte2021101486510.1080/21623945.2020.1870060
    [Google Scholar]
  62. LinderK. ArnerP. Flores-MoralesA. Tollet-EgnellP. NorstedtG. Differentially expressed genes in visceral or subcutaneous adipose tissue of obese men and women.J. Lipid Res.200445114815410.1194/jlr.M300256‑JLR20014563828
    [Google Scholar]
  63. CohenP. SpiegelmanB.M. Brown and beige fat: Molecular parts of a thermogenic machine.Diabetes20156472346235110.2337/db15‑031826050670
    [Google Scholar]
  64. PoherA.L. AltirribaJ. Veyrat-DurebexC. Rohner-JeanrenaudF. Brown adipose tissue activity as a target for the treatment of obesity/insulin resistance.Front. Physiol.20156410.3389/fphys.2015.0000425688211
    [Google Scholar]
  65. GälmanC. LundåsenT. KharitonenkovA. The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARalpha activation in man.Cell Metab.20088216917410.1016/j.cmet.2008.06.01418680716
    [Google Scholar]
  66. JustesenS. HaugegaardK.V. HansenJ.B. HansenH.S. AndersenB. The autocrine role of FGF21 in cultured adipocytes.Biochem. J.2020477132477248710.1042/BCJ2020022032648929
    [Google Scholar]
  67. FriedmanJ. 20 years of leptin: Leptin at 20: An overview.J. Endocrinol.20142231T1T810.1530/JOE‑14‑040525121999
    [Google Scholar]
  68. ObradovicM. Sudar-MilovanovicE. SoskicS. Leptin and obesity: Role and clinical implication.Front. Endocrinol.20211258588710.3389/fendo.2021.58588734084149
    [Google Scholar]
  69. StraubL.G. SchererP.E. Metabolic Messengers: Adiponectin.Nat. Metab.20191333433910.1038/s42255‑019‑0041‑z32661510
    [Google Scholar]
  70. AtzmonG. YangX.M. MuzumdarR. MaX.H. GabrielyI. BarzilaiN. Differential gene expression between visceral and subcutaneous fat depots.Horm. Metab. Res.20023411/1262262810.1055/s‑2002‑3825012660871
    [Google Scholar]
  71. ZhangX.Y. GuoC.C. YuY.X. XieL. ChangC.Q. Establishment of high-fat diet-induced obesity and insulin resistance model in rats.Beijing Da Xue Xue Bao Yi Xue Ban2020523557563
    [Google Scholar]
  72. SzaboC.E. ManO.I. IstrateA. Role of adiponectin and tumor necrosis factor-alpha in the pathogenesis and evolution of type 1 diabetes mellitus in children and adolescents.Diagnostics2020101194510.3390/diagnostics1011094533202729
    [Google Scholar]
  73. LiuC. FengX. LiQ. WangY. LiQ. HuaM. Adiponectin, TNF-α and inflammatory cytokines and risk of type 2 diabetes: A systematic review and meta-analysis.Cytokine20168610010910.1016/j.cyto.2016.06.02827498215
    [Google Scholar]
  74. BertinE. NguyenP. GuenounouM. DurlachV. PotronG. LeuteneggerM. Plasma levels of tumor necrosis factor-alpha (TNF-alpha) are essentially dependent on visceral fat amount in type 2 diabetic patients.Diabetes Metab.200026317818210880890
    [Google Scholar]
  75. ThissenJ.P. UnderwoodL. MaiterD. MaesM. ClemmonsD.R. KetelslegersJ.M. Failure of insulin-like growth factor-I (IGF-I) infusion to promote growth in protein-restricted rats despite normalization of serum IGF-I concentrations.Endocrinology1991128288589010.1210/endo‑128‑2‑8851989867
    [Google Scholar]
  76. MiyazakiY. PipekR. MandarinoL.J. DeFronzoR.A. Tumor necrosis factor α and insulin resistance in obese type 2 diabetic patients.Int. J. Obes.2003271889410.1038/sj.ijo.080218712532159
    [Google Scholar]
  77. YeJ. Mechanisms of insulin resistance in obesity.Front. Med.201371142410.1007/s11684‑013‑0262‑623471659
    [Google Scholar]
  78. KatsukiA. SumidaY. MurashimaS. Serum levels of tumor necrosis factor-alpha are increased in obese patients with noninsulin-dependent diabetes mellitus.J. Clin. Endocrinol. Metab.199883385986210.1210/jcem.83.3.46189506740
    [Google Scholar]
  79. Nieto-VazquezI. Fernández-VeledoS. KrämerD.K. Vila-BedmarR. Garcia-GuerraL. LorenzoM. Insulin resistance associated to obesity: The link TNF-alpha.Arch. Physiol. Biochem.2008114318319410.1080/1381345080218104718629684
    [Google Scholar]
  80. Alvarez-CrespoM. CsikaszR.I. Martínez-SánchezN. Essential role of UCP1 modulating the central effects of thyroid hormones on energy balance.Mol. Metab.20165427128210.1016/j.molmet.2016.01.00827069867
    [Google Scholar]
  81. von Holstein-RathlouS BonDurantLD PeltekianL FGF21 mediates endocrine control of simple sugar intake and sweet taste preference by the liver.Cell Metab.201623233534310.1016/j.cmet.2015.12.00326724858
    [Google Scholar]
  82. BonDurantLD PotthoffMJ Fibroblast growth factor 21: A versatile regulator of metabolic homeostasis.Annu. Rev. Nutr.201838117319610.1146/annurev‑nutr‑071816‑06480029727594
    [Google Scholar]
  83. GilroyC.A. CapozziM.E. VarankoA.K. Sustained release of a GLP-1 and FGF21 dual agonist from an injectable depot protects mice from obesity and hyperglycemia.Sci. Adv.2020635eaaz989010.1126/sciadv.aaz989032923621
    [Google Scholar]
  84. Labandeira-GarciaJ.L. Costa-BesadaM.A. LabandeiraC.M. Villar-ChedaB. Rodríguez-PerezA.I. Insulin-like growth factor-1 and neuroinflammation.Front. Aging Neurosci.2017936510.3389/fnagi.2017.0036529163145
    [Google Scholar]
  85. KimK.H. LeeM.S. FGF21 as a stress hormone: The roles of FGF21 in stress adaptation and the treatment of metabolic diseases.Diabetes Metab. J.201438424525110.4093/dmj.2014.38.4.24525215270
    [Google Scholar]
  86. ElbeinS.C. Perspective: The search for genes for type 2 diabetes in the post-genome era.Endocrinology200214362012201810.1210/endo.143.6.883112021163
    [Google Scholar]
  87. ChenW. ShenZ. CaiS. ChenL. WangD. FGF21 promotes wound healing of rat brain microvascular endothelial cells through facilitating TNF-α-mediated VEGFA and ERK1/2 signaling pathway.Adv. Clin. Exp. Med.202130771172010.17219/acem/13349434118146
    [Google Scholar]
  88. DushayJ. ChuiP.C. GopalakrishnanG.S. Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease.Gastroenterology2010139245646310.1053/j.gastro.2010.04.05420451522
    [Google Scholar]
  89. ChenZ. YangL. LiuY. HuangP. SongH. ZhengP. The potential function and clinical application of FGF21 in metabolic diseases.Front. Pharmacol.202213108921410.3389/fphar.2022.1089214
    [Google Scholar]
  90. LiuD. PangJ. ShaoW. Hepatic fibroblast growth factor 21 Is involved in mediating functions of liraglutide in mice with dietary challenge.Hepatology20217442154216910.1002/hep.3185633851458
    [Google Scholar]
  91. PotthoffM.J. InagakiT. SatapatiS. FGF21 induces PGC-1α and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response.Proc. Natl. Acad. Sci. USA200910626108531085810.1073/pnas.090418710619541642
    [Google Scholar]
  92. AmekaM. MarkanK.R. MorganD.A. Liver derived FGF21 maintains core body temperature during acute cold exposure.Sci. Rep.20199163010.1038/s41598‑018‑37198‑y30679672
    [Google Scholar]
  93. WondmkunY.T. Obesity, insulin resistance, and type 2 diabetes: Associations and therapeutic implications.Diabetes Metab. Syndr. Obes.2020133611361610.2147/DMSO.S27589833116712
    [Google Scholar]
  94. CharlesE.D. Neuschwander-TetriB.A. Pablo FriasJ. Pegbelfermin (BMS‐986036), PEGylated FGF21, in patients with obesity and type 2 diabetes: Results from a randomized phase 2 Study.Obesity2019271414910.1002/oby.2234430520566
    [Google Scholar]
  95. JayawardenaR. JeyakumarD.T. MisraA. HillsA.P. RanasingheP. Obesity: A potential risk factor for infection and mortality in the current COVID-19 epidemic.Diabetes Metab. Syndr.20201462199220310.1016/j.dsx.2020.11.00133395781
    [Google Scholar]
  96. PotthoffM.J. KliewerS.A. MangelsdorfD.J. Endocrine fibroblast growth factors 15/19 and 21: From feast to famine.Genes Dev.201226431232410.1101/gad.184788.11122302876
    [Google Scholar]
  97. CaputoM. PigniS. AgostiE. Regulation of GH and GH signaling by nutrients.Cells2021106137610.3390/cells1006137634199514
    [Google Scholar]
  98. OwenB.M. DingX. MorganD.A. FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss.Cell Metab.201420467067710.1016/j.cmet.2014.07.01225130400
    [Google Scholar]
  99. ArnerP. PetterssonA. MitchellP.J. DunbarJ.D. KharitonenkovA. RydénM. FGF21 attenuates lipolysis in human adipocytes - A possible link to improved insulin sensitivity.FEBS Lett.2008582121725173010.1016/j.febslet.2008.04.03818460341
    [Google Scholar]
  100. BaruchA. WongC. ChinnL.W. Antibody-mediated activation of the FGFR1/Klothoβ complex corrects metabolic dysfunction and alters food preference in obese humans.Proc. Natl. Acad. Sci. USA202011746289922900010.1073/pnas.201207311733139537
    [Google Scholar]
  101. LiH. FangQ. GaoF. Fibroblast growth factor 21 levels are increased in nonalcoholic fatty liver disease patients and are correlated with hepatic triglyceride.J. Hepatol.201053593494010.1016/j.jhep.2010.05.01820675007
    [Google Scholar]
  102. TurerA.T. SchererP.E. Adiponectin: Mechanistic insights and clinical implications.Diabetologia20125592319232610.1007/s00125‑012‑2598‑x22688349
    [Google Scholar]
  103. LaegerT. HenaganT.M. AlbaradoD.C. FGF21 is an endocrine signal of protein restriction.J. Clin. Invest.201412493913392210.1172/JCI7491525133427
    [Google Scholar]
/content/journals/cdr/10.2174/0115733998265915231116043813
Loading
/content/journals/cdr/10.2174/0115733998265915231116043813
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test