
Full text loading...
Introduction: The goal of this study was to see if ascorbic acid grafted polylactic glycolic acid-b-polyethylene glycol nanoparticles (PLGA-b-PEG NPs) might boost the carrying or transport capacity of rivastigmine(RSM) to the brain via choroid plexus Sodium-dependent vitamin C transporter 2 (SVCT2 transporters). The IR and 1H NMR, were used to characterise the PLGA-b-PEG copolymer. Methods: Nanoprecipitation method was used to make PLGA-b-PEG NPs. To promote SVCT2- mediated transportation of ascorbic acid (Asc) into the brain, PLGA-b-PEG NPs of acceptable size, polydispersity, and drug loading were bound with ascorbic acid (PLGA-b-PEG-Asc). When compared to PLGA-b-mPEG NPs, the surface functionalization of NPs with ascorbic acid dramatically improved the cellular uptake of NPs in SVCT2 expressing NIH/3T3 cells. Radial Arm Maze Test, and Acetylcholinesterase (AChE) activity in scopolamine-induced amnetic rats were used to assess in vivo pharmacodynamic effectiveness. Results: In vivo pharmacodynamic tests revealed that drug loaded PLGA-b-PEG-Asc NPs had much greater therapeutic and sustained activity than free drugs, and PLGA-b-mPEG NPs to the brain. Conclusion: As a consequence, the findings revealed that using ascorbic acid grafted PLGA-b-PEG NPs to deliver bioactives to the brain is a potential strategy.