Skip to content
2000
Volume 16, Issue 8
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Background: Curcumin has shown considerable pharmacological activity, including antiinflammatory activity. Nevertheless, the pharmacological effect of curcumin may be limited because of poor water solubility, metabolizing rapidly and systemic elimination. Objective: In the current research, a novel curcumin nanoemulsion (Cur-NE) was developed for improving in vitro permeability and bioavailability via pulmonary administration. Methods: The Cur-NE was prepared by a modified emulsification-evaporation method and its surfac morphology, particles size and distribution, and encapsulation efficiencies of drug in NE were characterized. In vitro transmembrane transport experiment was performed to investigate the transport profile of curcumin across Xenopus alveolar membrane. The pharmacokinetics of Cur-NE in rabbits was evaluated. Results: The average particles size, zeta potential, polydispersity index of Cur-NE were 234.8±1.08 nm, -19.5±0.2 mV and 0.10, respectively. Xenopus alveolar membrane was used in the transmembrane transport study, the cumulative amount of curcumin was 6.6% for curcumin suspensions, but nearly 50% for Cur-NE at the time of 8 h (P<0.05). The pharmacokinetic study in rabbits, the absolute bioavailability of curcumin for Cur-NE was 24.11%. Conclusion: Thus, a novel Cur-NE for pulmonary drug delivery was developed for improving in vitro permeability and bioavailability, which can be an alternate to the oral administration.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/1567201816666190717125622
2019-10-01
2025-04-30
Loading full text...

Full text loading...

/content/journals/cdd/10.2174/1567201816666190717125622
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test