Skip to content
2000
Volume 15, Issue 4
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Background: The aim of this research was to engineer solid dispersion lipid particles (SDSLs) in which a solid dispersion (SD) was encapsulated to form the core of solid lipid particles (SLs), thereby achieving an efficient enhancement in the dissolution of a poorly water-soluble drug. Methods: Ultrasonication was introduced into the process to obtain micro/nanoscale SLs. The mechanism of dissolution enhancement was investigated by analysing the crystalline structure, molecular interactions, and particle size of the formulations. Results: The drug release from the SD-SLs was significantly greater than that from the SD or SLs alone. This enhancement in drug release was dependent on the preparation method and the drug-topolymer ratio of the SD. With an appropriate amount of polymer in the SD, the solidification method had the potential to alter the drug crystallinity to an amorphous state, resulting in particle uniformity and molecular interactions in the SD-SLs. Conclusions: The proposed system provides a new strategy for enhancing the dissolution rate of poorly water-soluble drugs and further improving their bioavailability.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/1567201814666170606101138
2018-05-01
2025-05-20
Loading full text...

Full text loading...

/content/journals/cdd/10.2174/1567201814666170606101138
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test