Skip to content
2000
Volume 14, Issue 5
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Background: We have previously reported the synthesis of a novel polyethyleneglycol (PEG) lipid, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-PEG (DDA-PEG). This study aimed to clarify the anti-metastatic effect and localization of DDA-PEG-modified liposomes on a murine hepatic metastasis model. Methods: M5076 ovarian sarcoma cells were inoculated for hepatic metastasis model mice. The accumulation of liposomes in the tumor and metastatic sites was detected by fluorescent imaging device. In metastasis study, doxorubicin (DOX) loaded DDA-PEG-modified liposome (DDA-LDOX) was injected. Alexa Fluor 790 NHS Ester loaded DDA-PEG-modified liposomes were used to detect fluorescence intensity at metastatic sites when visualized topically using a fluorescence imaging device. Results: DDA-PEG-modified liposomes accumulated at the sites of hepatic metastasis but not in the normal hepatocytes. Furthermore, the DDA-LDOX inhibited metastasis in this model. The survival time of M5076 ovarian sarcoma bearing mice in DDA-LDOX group was longer than those in control, DOX solution and the other PEG-modified liposomal DOX groups, and the survival ratio in DDALDOX group remained 66.7% until 60 days after treatment. Conclusion: It is expected that the DDA-PEG-modified liposomes will extensively contribute in clinical practice as a superior drug carrier because this liposomes proved to be effective against metastasis.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/1567201813666160328113653
2017-08-01
2025-05-23
Loading full text...

Full text loading...

/content/journals/cdd/10.2174/1567201813666160328113653
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test