Skip to content
2000
image of Novel Antibiotic-Loaded PEGylated Xerogels of Acidified Chitosan for Periodontal Diseases

Abstract

Introduction

The primary aim of this study was to develop an effective treatment strategy for periodontal diseases that maximizes therapeutic effects while minimizing systemic adverse effects. Specifically, the study focused on creating a xerogel-based localized drug delivery system for the slow release of doxycycline hyclate (DH) to treat periodontal disease.

Methods

Xerogels were prepared using the solvent casting method, with the solvent being evaporated slowly at ambient conditions. The prepared DH xerogels underwent comprehensive characterization to assess their in-silico compatibility, pharmacokinetics, and physicochemical properties. The properties studied included drying time and rate, thickness, moisture content, swelling index, organoleptic properties, scanning electron microscopy, FTIR spectroscopy, differential scanning calorimetry, drug release and kinetics, and antibacterial activity.

Results

In-silico studies demonstrated compatibility between the ingredients, indicating minimal adverse effects on the body. The analysis revealed hydrogen bonding between the drug and polymers, changing the drug's crystallization characteristics to an amorphous form. The release profiles of DH from the xerogels indicated a slow release, ranging from 29.42% to 66.30% over 10 hours, following the Hopfenberg model.

Conclusion

The findings of this study suggest that the formulated xerogels are well-suited for periodontal applications. The slow-release profile of DH from the xerogels offers a promising approach for localized treatment of periodontal disease, reducing the risk of systemic adverse effects. This data is valuable for dental practitioners and pharmaceutical formulators, providing a new avenue for enhancing periodontal disease treatment.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018377472250326061736
2025-03-26
2025-05-02
Loading full text...

Full text loading...

References

  1. Ramesh S. Sivasamy A. Rhee K.Y. Park S.J. Hui D. Preparation and characterization of maleimide–polystyrene/SiO2–Al2O3 hybrid nanocomposites by an in situ sol–gel process and its antimicrobial activity. Compos., Part B Eng. 2015 75 167 175 10.1016/j.compositesb.2015.01.040
    [Google Scholar]
  2. Steven C.R. Busby G.A. Mather C. Tariq B. Briuglia M.L. Lamprou D.A. Urquhart A.J. Grant M.H. Patwardhan S.V. Bioinspired silica as drug delivery systems and their biocompatibility. J. Mater. Chem. B Mater. Biol. Med. 2014 2 31 5028 5042 10.1039/C4TB00510D 32261836
    [Google Scholar]
  3. Kang Y. Chen X. Song S. Yu L. Zhang P. Friction and wear behavior of nanosilica-filled epoxy resin composite coatings. Appl. Surf. Sci. 2012 258 17 6384 6390 10.1016/j.apsusc.2012.03.046
    [Google Scholar]
  4. Limón D. Jiménez-Newman C. Rodrigues M. González-Campo A. Amabilino D.B. Calpena A.C. Pérez-García L. Cationic supramolecular hydrogels for overcoming the skin barrier in drug delivery. ChemistryOpen 2017 6 4 585 598 10.1002/open.201700040 28794954
    [Google Scholar]
  5. Idumah C.I. Characterization and fabrication of xerogel polymeric nanocomposites and multifunctional applications. Res. Sq. 2022 2022 10.21203/rs.3.rs‑1961392/v1
    [Google Scholar]
  6. Slavkova M. Tzankov B. Popova T. Voycheva C. Gel formulations for topical treatment of skin cancer: A review. Gels 2023 9 5 352 10.3390/gels9050352 37232944
    [Google Scholar]
  7. Li X. Yang X. Wang Z. Liu Y. Guo J. Zhu Y. Shao J. Li J. Wang L. Wang K. Antibacterial, antioxidant and biocompatible nanosized quercetin-PVA xerogel films for wound dressing. Colloids Surf. B Biointerfaces 2022 209 Pt 2 112175 10.1016/j.colsurfb.2021.112175 34740095
    [Google Scholar]
  8. Elshishiny F. Mamdouh W. Fabrication of Nanofibrous/Xerogel layer-by-layer biocomposite scaffolds for skin tissue regeneration: In vitro study. ACS Omega 2020 5 5 2133 2147 10.1021/acsomega.9b02832 32064374
    [Google Scholar]
  9. Meza-Valle K.Z. Saucedo-Acuña R.A. Tovar-Carrillo K.L. Cuevas-González J.C. Zaragoza-Contreras E.A. Melgoza-Lozano J. Characterization and topical study of aloe vera hydrogel on wound-healing process. Polymers 2021 13 22 3958 10.3390/polym13223958 34833257
    [Google Scholar]
  10. Gp R. Mr R. Strontium ion cross-linked alginate-g-poly (PEGMA) xerogels for wound healing applications: In vitro studies. Carbohydr. Polym. 2021 251 117119 10.1016/j.carbpol.2020.117119 33142654
    [Google Scholar]
  11. Abdul Khalil H.P.S. Yahya E.B. Tajarudin H.A. Balakrishnan V. Nasution H. Insights into the role of biopolymer-based xerogels in biomedical applications. Gels 2022 8 6 334 10.3390/gels8060334 35735678
    [Google Scholar]
  12. Fonseca L.S. Silveira R.P. Deboni A.M. Benvenutti E.V. Costa T.M.H. Guterres S.S. Pohlmann A.R. Nanocapsule@xerogel microparticles containing sodium diclofenac: A new strategy to control the release of drugs. Int. J. Pharm. 2008 358 1-2 292 295 10.1016/j.ijpharm.2008.02.005 18358650
    [Google Scholar]
  13. Wu Z. Joo H. Gyu Lee T. Lee K. Controlled release of lidocaine hydrochloride from the surfactant-doped hybrid xerogels. J. Control. Release 2005 104 3 497 505 10.1016/j.jconrel.2005.02.023 15911049
    [Google Scholar]
  14. Radin S. Ducheyne P. Controlled release of vancomycin from thin sol–gel films on titanium alloy fracture plate material. Biomaterials 2007 28 9 1721 1729 10.1016/j.biomaterials.2006.11.035 17184835
    [Google Scholar]
  15. Barbé C. Bartlett J. Kong L. Finnie K. Lin H.Q. Larkin M. Calleja S. Bush A. Calleja G. Silica particles: A novel drug-delivery system. Adv. Mater. 2004 16 21 1959 1966 10.1002/adma.200400771
    [Google Scholar]
  16. Maver U. Godec A. Bele M. Planinšek O. Gaberšček M. Srčič S. Jamnik J. Novel hybrid silica xerogels for stabilization and controlled release of drug. Int. J. Pharm. 2007 330 1-2 164 174 10.1016/j.ijpharm.2006.09.024 17055199
    [Google Scholar]
  17. Santos E.M. Radin S. Shenker B.J. Shapiro I.M. Ducheyne P. Si-Ca-P xerogels and bone morphogenetic protein act synergistically on rat stromal marrow cell differentiation in vitro. J. Biomed. Mater. Res. 1998 41 1 87 94 10.1002/(SICI)1097‑4636(199807)41:1<87::AID‑JBM11>3.0.CO;2‑E 9641628
    [Google Scholar]
  18. Roveri N. Morpurgo M. Palazzo B. Parma B. Vivi L. Silica xerogels as a delivery system for the controlled release of different molecular weight heparins. Anal. Bioanal. Chem. 2005 381 3 601 606 10.1007/s00216‑004‑2765‑0 15289979
    [Google Scholar]
  19. Sieminska L. Ferguson M. Zerda T.W. Couch E. Diffusion of steroids in porous sol-gel glass: Application in slow drug delivery. J. Sol-Gel Sci. Technol. 1997 8 1-3 1105 1109 10.1007/BF02436991
    [Google Scholar]
  20. Boateng J. Mitchell J. Pawar H. Ayensu I. Functional characterisation and permeation studies of lyophilised thiolated chitosan xerogels for buccal delivery of insulin. Protein Pept. Lett. 2014 21 11 1163 1175 10.2174/0929866521666140805124403 25101633
    [Google Scholar]
  21. Ayensu I. Mitchell J.C. Boateng J.S. In vitro characterisation of chitosan based xerogels for potential buccal delivery of proteins. Carbohydr. Polym. 2012 89 3 935 941 10.1016/j.carbpol.2012.04.039 24750883
    [Google Scholar]
  22. Niknia N. Kadkhodaee R. Gum tragacanth-polyvinyl alcohol cryogel and xerogel blends for oral delivery of silymarin: Structural characterization and mucoadhesive property. Carbohydr. Polym. 2017 177 315 323 10.1016/j.carbpol.2017.08.110 28962773
    [Google Scholar]
  23. Kubis A. Małecka K. Studies on dressings for mucosa of oral cavity. Part 1: Influence of hydrophilizing substances on xerogel properties of dressings comprising Kunitz protease inhibitor. Pharmazie 1988 43 7 486 488 3222280
    [Google Scholar]
  24. Małecka K. Kubis A. Studies on dressings for treatment of mucous membranes of oral cavity. Part 2: Influence of hydrophilizing substances on properties of hydrogel dressings comprising Kunitz protease inhibitor. Pharmazie 1988 43 10 694 696 3212015
    [Google Scholar]
  25. Małecka K. Kubis A. Studies on dressings for mucosa of the oral cavity. Part 3: Effect of preparation technology on the physical and chemical properties of stomatological xerogel dressings. Pharmazie 1996 51 4 240 241 8628740
    [Google Scholar]
  26. Malecka K. Kubis A.A. Studies on dressings for mucosa of the oral cavity. Part 4: Influence of technology used in the preparation of dental xerogel dressings in the presence of acetone on their properties. Pharmazie 1998 53 6 396 398 9675769
    [Google Scholar]
  27. Malecka K. Kubis A.A. Studies on dressings for oral cavity mucosa. Part 5: Properties of xerogel stomatological dressings with one-side antiadhesive coating. Pharmazie 2001 56 1 64 65 11210673
    [Google Scholar]
  28. Malecka K. Kubis A.A. Studies on dressings for mucosal oral cavity. Part 6: Influence of a solvent and 1,2-propylene glycol on the pharmaceutic properties of dental xerogel dressings. Pharmazie 2001 56 8 669 670 11534352
    [Google Scholar]
  29. Rigby S. Fairhead M. van der Walle C. Engineering silica particles as oral drug delivery vehicles. Curr. Pharm. Des. 2008 14 18 1821 1831 10.2174/138161208784746671 18673185
    [Google Scholar]
  30. Soleimani Dorcheh A. Abbasi M.H. Silica aerogel; synthesis, properties and characterization. J. Mater. Process. Technol. 2008 199 1-3 10 26 10.1016/j.jmatprotec.2007.10.060
    [Google Scholar]
  31. Ahola M.S. Säilynoja E.S. Raitavuo M.H. Vaahtio M.M. Salonen J.I. Yli-Urpo A.U. In vitro release of heparin from silica xerogels. Biomaterials 2001 22 15 2163 2170 10.1016/S0142‑9612(00)00407‑5 11432596
    [Google Scholar]
  32. Radin S. Falaize S. Lee M.H. Ducheyne P. In vitro bioactivity and degradation behavior of silica xerogels intended as controlled release materials. Biomaterials 2002 23 15 3113 3122 10.1016/S0142‑9612(02)00051‑0 12102182
    [Google Scholar]
  33. Radin S. El-Bassyouni G. Vresilovic E.J. Schepers E. Ducheyne P. In vivo tissue response to resorbable silica xerogels as controlled-release materials. Biomaterials 2005 26 9 1043 1052 10.1016/j.biomaterials.2004.04.004 15369693
    [Google Scholar]
  34. Kierys A. Rawski M. Goworek J. Polymer–silica composite as a carrier of an active pharmaceutical ingredient. Microporous Mesoporous Mater. 2014 193 40 46 10.1016/j.micromeso.2014.03.011
    [Google Scholar]
  35. Yan X.Z. Nijhuis A.W.G. van den Beucken J.J.J.P. Both S.K. Jansen J.A. Leeuwenburgh S.C.G. Yang F. Enzymatic control of chitosan gelation for delivery of periodontal ligament cells. Macromol. Biosci. 2014 14 7 1004 1014 10.1002/mabi.201400040 24687628
    [Google Scholar]
  36. Haghighat A. Mehdikhani-Nahrkhalaji M. Reihany-Mohammadi A. Soltani-Dehnavi S. Eblaghian G. Novel chitosan/polyethylene glycol/bioactive glass nanocomposite membrane for guided tissue/bone regeneration. Int. J. Adv. Biotechnol. Res. 2017 8 787 800
    [Google Scholar]
  37. Hakimi F. Hashemikia S. Sadighian S. Ramazani A. Nanofibrous chitosan/polyethylene oxide silver/hydroxyapatite/silica composite as a potential biomaterial for local treatment of periodontal disease. Polym. Bull. 2023 80 8 8703 8723 10.1007/s00289‑022‑04466‑x
    [Google Scholar]
  38. Amalraj A. Raj K.K.J. Haponiuk J.T. Thomas S. Gopi S. Preparation, characterization, and antimicrobial activity of chitosan/gum arabic/polyethylene glycol composite films incorporated with black pepper essential oil and ginger essential oil as potential packaging and wound dressing materials. Adv. Compos. Hybrid Mater. 2020 3 4 485 497 10.1007/s42114‑020‑00178‑w
    [Google Scholar]
  39. Chandel A.K.S. Kumar C.U. Jewrajka S.K. Effect of polyethylene glycol on properties and drug encapsulation-release performance of biodegradable/cytocompatible agarose-polyethylene glycol-polycaprolactone amphiphilic Co-network gels. ACS Appl. Mater. Interfaces 2016 8 5 3182 3192 10.1021/acsami.5b10675 26760672
    [Google Scholar]
  40. Walker C.B. Pappas J.D. Tyler K.Z. Cohen S. Gordon J.M. Antibiotic susceptibilities of periodontal bacteria: In vitro susceptibilities to eight antimicrobial agents. J. Periodontol. 1985 56 11S 67 74 10.1902/jop.1985.56.11s.67
    [Google Scholar]
  41. Socransky S.S. Haffajee A.D. Cugini M.A. Smith C. Kent R.L. Jr Microbial complexes in subgingival plaque. J. Clin. Periodontol. 1998 25 2 134 144 10.1111/j.1600‑051X.1998.tb02419.x 9495612
    [Google Scholar]
  42. da Silva-Boghossian C.M. do Souto R.M. Luiz R.R. Colombo A.P.V. Association of red complex, A. actinomycetemcomitans and non-oral bacteria with periodontal diseases. Arch. Oral Biol. 2011 56 9 899 906 10.1016/j.archoralbio.2011.02.009 21397893
    [Google Scholar]
  43. Schwarz F. Derks J. Monje A. Wang H.L. Peri‐implantitis. J. Clin. Periodontol. 2018 45 S20 S246 S266 10.1111/jcpe.12954 29926484
    [Google Scholar]
  44. Fragkioudakis I. Riggio M.P. Apatzidou D.A. Understanding the microbial components of periodontal diseases and periodontal treatment-induced microbiological shifts. J. Med. Microbiol. 2021 70 1 1 10 10.1099/jmm.0.001247 33295858
    [Google Scholar]
  45. Milano S. Arcoleo F. D’Agostino P. Cillari E. Intraperitoneal injection of tetracyclines protects mice from lethal endotoxemia downregulating inducible nitric oxide synthase in various organs and cytokine and nitrate secretion in blood. Antimicrob. Agents Chemother. 1997 41 1 117 121 10.1128/AAC.41.1.117 8980766
    [Google Scholar]
  46. Hanemaaijer R. Visser H. Koolwijk P. Sorsa T. Salo T. Golub L.M. Van Hinsbergh V.W.M. Inhibition of MMP synthesis by doxycycline and chemically modified tetracyclines (CMTs) in human endothelial cells. Adv. Dent. Res. 1998 12 1 114 118 10.1177/08959374980120010301 9972133
    [Google Scholar]
  47. Simpson M.C. Schaefer E.G. Doxycycline Hyclate. Drugs Future 2022 29 159 160 10.37573/9781585286720.071
    [Google Scholar]
  48. Holmes N.E. Charles P.G.P. Safety and efficacy review of doxycycline. Clin. Med. Ther. 2009 1 CMT.S2035 10.4137/CMT.S2035
    [Google Scholar]
  49. Tyler B. Gullotti D. Mangraviti A. Utsuki T. Brem H. Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv. Drug Deliv. Rev. 2016 107 163 175 10.1016/j.addr.2016.06.018 27426411
    [Google Scholar]
  50. Abu-Izneid T. Rauf A. Akram Z. Naz S. Wadood A. Muhammad N. Hayat C. Al-Awthan Y.S. Bahattab O.S. Discovery of new α‐glucosides, antiglycation agent, and in silico study of 2-(3,4-dihydroxyphenyl)-7,8-dihydroxy-3-methoxy-4H-chromen-4-one isolated from Pistacia chinensis. Heliyon 2024 10 5 e27298 10.1016/j.heliyon.2024.e27298 38495136
    [Google Scholar]
  51. Curcio M. Gianfranco Spizzirri U. Iemma F. Puoci F. Cirillo G. Parisi O.I. Picci N. Grafted thermo-responsive gelatin microspheres as delivery systems in triggered drug release. Eur. J. Pharm. Biopharm. 2010 76 1 48 55 10.1016/j.ejpb.2010.05.008 20580821
    [Google Scholar]
  52. Bao Y. Ma J. Li N. Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydr. Polym. 2011 84 1 76 82 10.1016/j.carbpol.2010.10.061 34663033
    [Google Scholar]
  53. Nesseem D.I. Eid S.F. El-Houseny S.S. Development of novel transdermal self-adhesive films for tenoxicam, an anti-inflammatory drug. Life Sci. 2011 89 13-14 430 438 10.1016/j.lfs.2011.06.026 21777594
    [Google Scholar]
  54. Rokhade A.P. Agnihotri S.A. Patil S.A. Mallikarjuna N.N. Kulkarni P.V. Aminabhavi T.M. Semi-interpenetrating polymer network microspheres of gelatin and sodium carboxymethyl cellulose for controlled release of ketorolac tromethamine. Carbohydr. Polym. 2006 65 3 243 252 10.1016/j.carbpol.2006.01.013
    [Google Scholar]
  55. Mishra R.K. Datt M. Banthia A.K. Synthesis and characterization of pectin/PVP hydrogel membranes for drug delivery system. AAPS PharmSciTech 2008 9 2 395 403 10.1208/s12249‑008‑9048‑6 18431673
    [Google Scholar]
  56. Oprea A.M. Ciolacu D. Neamtu A. Mungiu O.C. Stoica B. Vasile C. Cellulose/chondroitin sulfate hydrogels: Synthesis, drug loading/release properties and biocompatibility. Cellul. Chem. Technol. 2010 44 369
    [Google Scholar]
  57. Jana S. Sen K.K. Gellan gum/PVA interpenetrating network micro-beads for sustained drug delivery. Mater. Today Proc. 2019 11 2 614 619 10.1016/j.matpr.2019.03.018
    [Google Scholar]
  58. Franklin D.S. Guhanathan S. Synthesis and characterization of citric acid-based pH-sensitive biopolymeric hydrogels. Polym. Bull. 2014 71 1 93 110 10.1007/s00289‑013‑1047‑4
    [Google Scholar]
  59. Murray J.M. Delahunty C.M. Baxter I.A. Descriptive sensory analysis: Past, present and future. Food Res. Int. 2001 34 6 461 471 10.1016/S0963‑9969(01)00070‑9
    [Google Scholar]
  60. Ramesh P.J. Basavaiah K. Divya M.R. Rajendraprasad N. Vinay K.B. Revanasiddappa H.D. Simple UV and visible spectrophotometric methods for the determination of doxycycline hyclate in pharmaceuticals. J. Anal. Chem. 2011 66 5 482 489 10.1134/S1061934811050157
    [Google Scholar]
  61. Shanmuganathan S. Shanumugasundaram N. Adhirajan N. Ramyaa Lakshmi T.S. Babu M. Preparation and characterization of chitosan microspheres for doxycycline delivery. Carbohydr. Polym. 2008 73 2 201 211 10.1016/j.carbpol.2007.11.039
    [Google Scholar]
  62. ICH Harmonised Tripartite Guideline Validation of analytical procedures: Text and methodology Q2(R1). International conference on harmonization of technical requirements for registration of pharmaceuticals for human use, Geneva, Switzerland 2005
    [Google Scholar]
  63. Giridhar R.S. Thakur A. Drug entrapment efficiency of silver nanocomposite hydrogel. Conf. Ser.: Mater. Sci. Eng. 2019 577 012176 10.1088/1757‑899X/577/1/012176
    [Google Scholar]
  64. British Pharmacopoeia London, UK Her Majesty's Stationary Office, Electronic version 2023
    [Google Scholar]
  65. Ahsan S.F. Sheraz M.A. Khan M.F. Anwar Z. Ahmed S. Ahmad I. Formulation and stability studies of fast disintegrating tablets of amlodipine besylate. IJPER 2019 53 3 480 493 10.5530/ijper.53.3.80
    [Google Scholar]
  66. Higuchi T. Rate of release of medicaments from ointment bases containing drugs in suspension. J. Pharm. Sci. 1961 50 10 874 875 10.1002/jps.2600501018 13907269
    [Google Scholar]
  67. Helal D.A. Abd El-Rhman D. Abdel-Halim S.A. El-Nabarawi M.A. Formulation and evaluation of fluconazole topical gel. Int. J. Pharm. Pharm. Sci. 2012 4 176 183
    [Google Scholar]
  68. Bruschi M.L. Mathematical models of drug release. Strategies to Modify the Drug Release from Pharmacutical Systems Woodhead Publishing 2015 63 86 10.1016/B978‑0‑08‑100092‑2.00005‑9
    [Google Scholar]
  69. Krzyściak W. Kościelniak D. Papież M. Jurczak A. Vyhouskaya P. Methods of biotyping of streptococcus mutans species with the routine test as a prognostic value in early childhood caries. Evid. Based Complement. Alternat. Med. 2017 2017 1 6859543 10.1155/2017/6859543 28698734
    [Google Scholar]
  70. Tripathi N. Goshisht M.K. Sahu S.K. Arora C. Applications of artificial intelligence to drug design and discovery in the big data era: A comprehensive review. Mol. Divers. 2021 25 3 1643 1664 10.1007/s11030‑021‑10237‑z 34110579
    [Google Scholar]
  71. Pires D.E.V. Blundell T.L. Ascher D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem. 2015 58 9 4066 4072 10.1021/acs.jmedchem.5b00104 25860834
    [Google Scholar]
  72. Waje S.S. Meshram M.W. Chaudhary V. Pandey R. Mahanawar P.A. Thorat B.N. Drying and shrinkage of polymer gels. Braz. J. Chem. Eng. 2005 22 2 209 216 10.1590/S0104‑66322005000200007
    [Google Scholar]
  73. Satha H. Atamnia K. Despetis F. Effect of drying processes on the texture of silica gels. J. Biomater. Nanobiotechnol. 2013 4 1 17 21 10.4236/jbnb.2013.41003
    [Google Scholar]
  74. Simpkins P.G. Johnson D.W. Jr Fleming D.A. Drying behavior of colloidal silica gels. J. Am. Ceram. Soc. 1989 72 10 1816 1821 10.1111/j.1151‑2916.1989.tb05984.x
    [Google Scholar]
  75. Miranda M. Maureira H. Rodríguez K. Vega-Gálvez A. Influence of temperature on the drying kinetics, physicochemical properties, and antioxidant capacity of Aloe Vera (Aloe Barbadensis Miller) gel. J. Food Eng. 2009 91 2 297 304 10.1016/j.jfoodeng.2008.09.007
    [Google Scholar]
  76. Tsagareishvili D. Sesikashvili O. Dadunashvili G. Sakhanberidze N. Tsagareishvili S. The influence of the moisture content of raw materials on the structuring of the extrudates. Potravinárstvo 2019 13 1 898 905 10.5219/1189
    [Google Scholar]
  77. Krisanti E. Aryani S.D. Mulia K. Effect of chitosan molecular weight and composition on mucoadhesive properties of mangostin-loaded chitosan-alginate microparticles. AIP Conf. Proc. 2017 1817 1 020014 10.1063/1.4976766
    [Google Scholar]
  78. Kubota N. Kikuchi Y. Preparation and properties of macromolecular complexes consisting of [2‐(diethylamino)ethyl]dextran hydrochloride and potassium metaphosphate. J. Appl. Polym. Sci. 1993 47 5 815 821 10.1002/app.1993.070470508
    [Google Scholar]
  79. Baird J.A. Van Eerdenbrugh B. Taylor L.S. A classification system to assess the crystallization tendency of organic molecules from undercooled melts. J. Pharm. Sci. 2010 99 9 3787 3806 10.1002/jps.22197 20623696
    [Google Scholar]
  80. Kapanya A. Somsunan R. Phasayavan W. Molloy R. Jiranusornkul S. Effect of molecular weight of poly(ethylene glycol) as humectant in interpenetrating polymer network hydrogels based on poly(sodium AMPS) and gelatin for wound dressing applications. Int. J. Polym. Mater. 2021 70 7 496 506 10.1080/00914037.2020.1740983
    [Google Scholar]
  81. Cadée J.A. van Luyn M.J.A. Brouwer L.A. Plantinga J.A. van Wachem P.B. de Groot C.J. den Otter W. Hennink W.E. In vivo biocompatibility of dextran-based hydrogels. J. Biomed. Mater. Res. 2000 50 3 397 404 10.1002/(SICI)1097‑4636(20000605)50:3<397::AID‑JBM14>3.0.CO;2‑A 10737882
    [Google Scholar]
  82. Ahmed E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015 6 2 105 121 10.1016/j.jare.2013.07.006 25750745
    [Google Scholar]
  83. Stark J.M. Firestone M.K. Mechanisms for soil moisture effects on activity of nitrifying bacteria. Appl. Environ. Microbiol. 1995 61 1 218 221 10.1128/aem.61.1.218‑221.1995 16534906
    [Google Scholar]
  84. Sheskey P.J. Cook W.G. Cable C.G. Handbook of pharmaceutical excipients 8th ed London Pharmaceutical Press 2017
    [Google Scholar]
  85. Tao R.E. Prajapati S. Pixley J.N. Grada A. Feldman S.R. Oral tetracycline-class drugs in dermatology: Impact of food intake on absorption and efficacy. Antibiotics (Basel) 2023 12 7 1152 10.3390/antibiotics12071152 37508248
    [Google Scholar]
  86. Albers P.T.M. van der Ven L.G.J. van Benthem R.A.T.M. Esteves A.C.C. de With G. Water swelling behavior of poly(ethylene glycol)-based polyurethane networks. Macromolecules 2020 53 3 862 874 10.1021/acs.macromol.9b02275 32063654
    [Google Scholar]
  87. Bajpai M. Bajpai S.K. Jyotishi P. Water absorption and moisture permeation properties of chitosan/poly(acrylamide-co-itaconic acid) IPC films. Int. J. Biol. Macromol. 2016 84 1 9 10.1016/j.ijbiomac.2015.11.088 26658228
    [Google Scholar]
  88. Yousf N. Nazir F. Salim R. Ahsan H. Sirwal A. Water solubility index and water absorption index of extruded product from rice and carrot blend. J. Pharmacogn. Phytochem. 2017 6 2165 2168
    [Google Scholar]
  89. Agarwal S. Murthy R.S.R. Effect of different polymer concentration on drug release rate and physicochemical properties of mucoadhesive gastroretentive tablets. Indian J. Pharm. Sci. 2015 77 6 705 714 10.4103/0250‑474X.174993 26997698
    [Google Scholar]
  90. Ahmadi F. Oveisi Z. Samani S.M. Amoozgar Z. Chitosan based hydrogels: Characteristics and pharmaceutical applications. Res. Pharm. Sci. 2015 10 1 1 16 26430453
    [Google Scholar]
  91. Zuberi S.A. Sheraz M.A. Ali S.A. Shah M.R. Mujahid S. Ahmed S. Anwar Z. Nanosponges-based drug delivery system for the cosmeceutical applications of stabilized ascorbic acid. Curr. Drug Deliv. 2023 20 10 1504 1524 10.2174/1567201819666220816093123 35975853
    [Google Scholar]
  92. Mohammed M. Syeda J. Wasan K. Wasan E. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics 2017 9 4 53 10.3390/pharmaceutics9040053 29156634
    [Google Scholar]
  93. Zhang Q. Li X. Zhao Y. Chen L. Preparation and performance of nanocomposite hydrogels based on different clay. Appl. Clay Sci. 2009 46 4 346 350 10.1016/j.clay.2009.09.003
    [Google Scholar]
  94. Santoso J. Adiputra K.C. Soerdirga L.C. Tarman K. Effect of acetic acid hydrolysis on the characteristics of water soluble chitosan. IOP Conf. Ser. Earth Environ. Sci. 2020 414 1 012021 10.1088/1755‑1315/414/1/012021
    [Google Scholar]
  95. Rinaudo M. Pavlov G. Desbrières J. Influence of acetic acid concentration on the solubilization of chitosan. Polymer (Guildf.) 1999 40 25 7029 7032 10.1016/S0032‑3861(99)00056‑7
    [Google Scholar]
  96. Inan T. Dalgakiran D. Kurkcuoglu O. Güner F.S. Elucidating doxycycline loading and release performance of imprinted hydrogels with different cross-linker concentrations: A computational and experimental study. J. Polym. Res. 2021 28 11 408 10.1007/s10965‑021‑02740‑6
    [Google Scholar]
  97. Farkas N.I. Marincaș L. Barabás R. Bizo L. Ilea A. Turdean G.L. Toșa M. Cadar O. Barbu-Tudoran L. Preparation and characterization of doxycycline-loaded electrospun PLA/HAP nanofibers as a drug delivery system. Materials 2022 15 6 2105 10.3390/ma15062105 35329557
    [Google Scholar]
  98. Fanelli S. Zimmermann A. Totóli E.G. Salgado H.R.N. FTIR Spectrophotometry as a green tool for quantitative analysis of drugs: Practical application to amoxicillin. J. Chem. 2018 2018 11-12 1 8 10.1155/2018/3920810
    [Google Scholar]
  99. He Z. Wang Z. Zhang H. Pan X. Su W. Liang D. Wu C. Doxycycline and hydroxypropyl-β-cyclodextrin complex in poloxamer thermal sensitive hydrogel for ophthalmic delivery. Acta Pharm. Sin. B 2011 1 4 254 260 10.1016/j.apsb.2011.10.004
    [Google Scholar]
  100. Cui S. Sun X. Li K. Gou D. Zhou Y. Hu J. Liu Y. Polylactide nanofibers delivering doxycycline for chronic wound treatment. Mater. Sci. Eng. C 2019 104 6 109745 10.1016/j.msec.2019.109745 31499963
    [Google Scholar]
  101. Iqbal D.N. Ehtisham-ul-Haque S. Ahmad S. Arif K. Hussain E.A. Iqbal M. Alshawwa S.Z. Abbas M. Amjed N. Nazir A. Enhanced antibacterial activity of chitosan, guar gum and polyvinyl alcohol blend matrix loaded with amoxicillin and doxycycline hyclate drugs. Arab. J. Chem. 2021 14 6 103156 10.1016/j.arabjc.2021.103156
    [Google Scholar]
  102. Chieng B. Ibrahim N. Yunus W. Hussein M. Poly(lactic acid)/Poly(ethylene glycol) polymer nanocomposites: Effects of graphene nanoplatelets. Polymers 2013 6 1 93 104 10.3390/polym6010093
    [Google Scholar]
  103. Talari A.C.S. Martinez M.A.G. Movasaghi Z. Rehman S. Rehman I.U. Advances in Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl. Spectrosc. Rev. 2017 52 5 456 506 10.1080/05704928.2016.1230863
    [Google Scholar]
  104. Melo-Silveira R.F. Fidelis G.P. Costa M.S.S.P. Telles C.B.S. Dantas-Santos N. Elias S.O. Ribeiro V.B. Barth A.L. Macedo A.J. Leite E.L. Rocha H.A.O. In vitro antioxidant, anticoagulant and antimicrobial activity and in inhibition of cancer cell proliferation by xylan extracted from corn cobs. Int. J. Mol. Sci. 2011 13 1 409 426 10.3390/ijms13010409 22312261
    [Google Scholar]
  105. Wolkers W.F. Oliver A.E. Tablin F. Crowe J.H. A Fourier-transform infrared spectroscopy study of sugar glasses. Carbohydr. Res. 2004 339 6 1077 1085 10.1016/j.carres.2004.01.016 15063194
    [Google Scholar]
  106. Silva F.R.F. Dore C.M.P.G. Marques C.T. Nascimento M.S. Benevides N.M.B. Rocha H.A.O. Chavante S.F. Leite E.L. Anticoagulant activity, paw edema and pleurisy induced carrageenan: Action of major types of commercial carrageenans. Carbohydr. Polym. 2010 79 1 26 33 10.1016/j.carbpol.2009.07.010
    [Google Scholar]
  107. Song C. Yu H. Zhang M. Yang Y. Zhang G. Physicochemical properties and antioxidant activity of chitosan from the blowfly Chrysomya megacephala larvae. Int. J. Biol. Macromol. 2013 60 347 354 10.1016/j.ijbiomac.2013.05.039 23792633
    [Google Scholar]
  108. Vino A.B. Ramasamy P. Shanmugam V. Shanmugam A. Extraction, characterization and in vitro antioxidative potential of chitosan and sulfated chitosan from Cuttlebone of Sepia aculeata Orbigny, 1848. Asian Pac. J. Trop. Biomed. 2012 2 1 S334 S341 10.1016/S2221‑1691(12)60184‑1
    [Google Scholar]
  109. Lim S.H. Hudson S.M. Synthesis and antimicrobial activity of a water-soluble chitosan derivative with a fiber-reactive group. Carbohydr. Res. 2004 339 2 313 319 10.1016/j.carres.2003.10.024 14698889
    [Google Scholar]
  110. Khairuddin Pramono E. Utomo S.B. Wulandari V. Zahrotul A.W. FTIR studies on the effect of concentration of polyethylene glycol on polymerization of Shellac. J. Phys. Conf. Ser. 2016 776 1 012053 10.1088/1742‑6596/776/1/012053
    [Google Scholar]
  111. Honary S. Zahir F. Effect of process factors on the properties of doxycycline nanovesicles. Trop. J. Pharm. Res. 2012 11 2 169 175 10.4314/tjpr.v11i2.1
    [Google Scholar]
  112. Hosseini S.M. Abbasalipourkabir R. Jalilian F.A. Asl S.S. Farmany A. Roshanaei G. Arabestani M.R. Doxycycline-encapsulated solid lipid nanoparticles as promising tool against Brucella melitensis enclosed in macrophage: A pharmacodynamics study on J774A.1 cell line. Antimicrob. Resist. Infect. Control 2019 8 1 62 10.1186/s13756‑019‑0504‑8 30988946
    [Google Scholar]
  113. De Cicco F. Russo P. Reverchon E. García-González C.A. Aquino R.P. Del Gaudio P. Prilling and supercritical drying: A successful duo to produce core-shell polysaccharide aerogel beads for wound healing. Carbohydr. Polym. 2016 147 482 489 10.1016/j.carbpol.2016.04.031 27178955
    [Google Scholar]
  114. Jia L. Zhang X. Xu H. Hua F. Hu X. Xie Q. Wang W. Jia J. Development of a doxycycline hydrochloride-loaded electrospun nanofibrous membrane for GTR/GBR applications. J. Nanomater. 2016 2016 10 1 10 10.1155/2016/6507459
    [Google Scholar]
  115. Kogawa A.C. Zoppi A. Quevedo M.A. Nunes Salgado H.R. Longhi M.R. Increasing doxycycline hyclate photostability by complexation with β-cyclodextrin. AAPS PharmSciTech 2014 15 5 1209 1217 10.1208/s12249‑014‑0150‑7 24889734
    [Google Scholar]
  116. Acosta-Ferreira S. Castillo O.S. Madera-Santana J.T. Mendoza-García D.A. Núñez-Colín C.A. Grijalva-Verdugo C. Villa-Lerma A.G. Morales-Vargas A.T. Rodríguez-Núñez J.R. Production and physicochemical characterization of chitosan for the harvesting of wild microalgae consortia. Biotechnol. Rep. (Amst.) 2020 28 e00554 10.1016/j.btre.2020.e00554 33209590
    [Google Scholar]
  117. Song H. Wu H. Li S. Tian H. Li Y. Wang J. Homogeneous synthesis of cationic chitosan via new avenue. Molecules 2018 23 8 1921 10.3390/molecules23081921 30071648
    [Google Scholar]
  118. Ferrero F. Periolatto M. Antimicrobial finish of textiles by chitosan UV-curing. J. Nanosci. Nanotechnol. 2012 12 6 4803 4810 10.1166/jnn.2012.4902 22905533
    [Google Scholar]
  119. Campos J. Díaz-García P. Montava I. Bonet-Aracil M. Bou-Belda E. Chitosan pretreatment for cotton dyeing with black tea. IOP Conf. Ser.: Mater. Sci. Eng. 2017 254 11 112001 10.1088/1757‑899X/254/11/112001
    [Google Scholar]
  120. Jayaramudu T. Raghavendra G.M. Varaprasad K. Reddy G.V.S. Reddy A.B. Sudhakar K. Sadiku E.R. Preparation and characterization of poly(ethylene glycol) stabilized nano silver particles by a mechanochemical assisted ball mill process. J. Appl. Polym. Sci. 2016 133 7 43027 10.1002/app.43027
    [Google Scholar]
  121. Biswal S. Sahoo J. Murthy P.N. Characterisation of gliclazide-PEG 8000 solid dispersions. Trop. J. Pharm. Res. 2009 8 5 417 424 10.4314/tjpr.v8i5.48085
    [Google Scholar]
  122. Chauhan S.B. Naved T. Parvez N. Effect of hydrophilic and hydrophobic polymer matrix on the transdermal drug delivery of ethinylestradiol and medroxyprogesterone acetate. Int. J. Applied Pharm. 2019 11 1 210 215 10.22159/ijap.2019v11i1.29886
    [Google Scholar]
  123. Patel R.D. Raval M.K. Differential scanning calorimetry: A screening tool for the development of diacerein eutectics. Results. Chemistry 2022 4 100315 10.1016/j.rechem.2022.100315
    [Google Scholar]
  124. Trasi N.S. Taylor L.S. Effect of polymers on nucleation and crystal growth of amorphous acetaminophen. CrystEngComm 2012 14 16 5188 5197 10.1039/c2ce25374g
    [Google Scholar]
  125. Sheraz M.A. Ahmed S. Rehman I. Effect of pH, polymer concentration and molecular weight on the physical state properties of tolfenamic acid. Pharm. Dev. Technol. 2015 20 3 352 360 10.3109/10837450.2013.871027 24417663
    [Google Scholar]
  126. Van Eerdenbrugh B. Taylor L.S. Small scale screening to determine the ability of different polymers to inhibit drug crystallization upon rapid solvent evaporation. Mol. Pharm. 2010 7 4 1328 1337 10.1021/mp1001153 20536263
    [Google Scholar]
  127. Thybo P. Kristensen J. Hovgaard L. Characterization and physical stability of tolfenamic acid-PVP K30 solid dispersions. Pharm. Dev. Technol. 2007 12 1 43 53 10.1080/10837450601166577 17484143
    [Google Scholar]
  128. Swartz M.E. Krull I.S. Handbook of analytical validation 1st ed Florida CRC Press 2012 10.1201/b12039
    [Google Scholar]
  129. Andleeb S. Ahmed S. Sheraz M.A. Anwar Z. Ahmad I. Development and validation of a spectrofluorimetric method for the analysis of tolfenamic acid in pure and tablet dosage form. Luminescence 2020 35 7 1017 1027 10.1002/bio.3810 32419348
    [Google Scholar]
  130. Kazi S.H. Sheraz M.A. Musharraf S.G. Ahmed S. Bano R. Haq F. Anwar Z. Ali R. Analysis of tolfenamic acid using a simple, rapid, and stability-indicating validated HPLC method. Antiinflamm. Antiallergy Agents Med. Chem. 2024 23 1 52 70 10.2174/1871523022666230608094152 37291774
    [Google Scholar]
  131. Shrivastava A. Saxena P. Validation of Analytical Methods: Methodology and Statistics 1st ed India CBS Publishers 2017
    [Google Scholar]
  132. Rasmussen H.T. Li W. Redlich D. Jimidar M.I. HPLC Method Development 1st ed Cambridge Academic Press 2005 145 190 10.1016/S0149‑6395(05)80050‑9
    [Google Scholar]
  133. Puyathorn N. Senarat S. Lertsuphotvanit N. Phaechamud T. Physicochemical and bioactivity characteristics of doxycycline hyclate-loaded solvent removal-induced ibuprofen-based in situ forming gel. Gels 2023 9 2 128 10.3390/gels9020128 36826298
    [Google Scholar]
  134. Cunha B.A. Sibley C.M. Ristuccia A.M. Doxycycline. Ther. Drug Monit. 1982 4 2 115 135 10.1097/00007691‑198206000‑00001 7048645
    [Google Scholar]
  135. Buranachai T. Praphairaksit N. Muangsin N. Chitosan/polyethylene glycol beads crosslinked with tripolyphosphate and glutaraldehyde for gastrointestinal drug delivery. AAPS PharmSciTech 2010 11 3 1128 1137 10.1208/s12249‑010‑9483‑z 20652459
    [Google Scholar]
  136. Bogardus J.B. Blackwood R.K. Jr Dissolution rates of doxycycline free base and hydrochloride salts. J. Pharm. Sci. 1979 68 9 1183 1184 10.1002/jps.2600680936 41085
    [Google Scholar]
  137. Legendre A.O. Silva L.R.R. Silva D.M. Rosa I.M.L. Azarias L.C. de Abreu P.J. de Araújo M.B. Neves P.P. Torres C. Martins F.T. Doriguetto A.C. Solid state chemistry of the antibiotic doxycycline: Structure of the neutral monohydrate and insights into its poor water solubility. CrystEngComm 2012 14 7 2532 2540 10.1039/C1CE06181J
    [Google Scholar]
  138. Karavana S.Y. Güneri P. Ertan G. Benzydamine hydrochloride buccal bioadhesive gels designed for oral ulcers: Preparation, rheological, textural, mucoadhesive and release properties. Pharm. Dev. Technol. 2009 14 6 623 631 10.3109/10837450902882351 19883251
    [Google Scholar]
  139. Needleman I.G. Martin G.P. Smales F.C. Characterisation of bioadhesives for periodontal and oral mucosal drug delivery. J. Clin. Periodontol. 1998 25 1 74 82 10.1111/j.1600‑051X.1998.tb02366.x 9477023
    [Google Scholar]
  140. Kumar K. Dhawan N. Sharma H. Vaidya S. Vaidya B. Bioadhesive polymers: Novel tool for drug delivery. Artif. Cells Nanomed. Biotechnol. 2014 42 4 274 283 10.3109/21691401.2013.815194 23859698
    [Google Scholar]
  141. Ahi Z.B. Renkler N.Z. Gul Seker M. Tuzlakoglu K. Biodegradable polymer films with a natural antibacterial extract as novel periodontal barrier membranes. Int. J. Biomater. 2019 2019 1 7 10.1155/2019/7932470 31485230
    [Google Scholar]
  142. Ghavami-Lahiji M. Shafiei F. Najafi F. Erfan M. Drug-loaded polymeric films as a promising tool for the treatment of periodontitis. J. Drug Deliv. Sci. Technol. 2019 52 122 129 10.1016/j.jddst.2019.04.034
    [Google Scholar]
  143. Damodharan N. Krishnamoorthy B. Senthil K.B. Soundrapandian C. Chitosan-polyethylene glycol blend films as local ophthalmic drug delivery units: In vitro studies and factors influencing drug release. Asian J. Chem. 2008 20 5 3649 3656
    [Google Scholar]
  144. Wang J.W. Hon M.H. Preparation of poly(ethylene glycol)/chitosan membranes by a glucose‐mediating process and in vitro drug release. J. Appl. Polym. Sci. 2005 96 4 1083 1094 10.1002/app.21506
    [Google Scholar]
  145. Krakauer T. Buckley M. Doxycycline is anti-inflammatory and inhibits staphylococcal exotoxin-induced cytokines and chemokines. Antimicrob. Agents Chemother. 2003 47 11 3630 3633 10.1128/AAC.47.11.3630‑3633.2003 14576133
    [Google Scholar]
  146. Aleanizy F.S. Alqahtani F.Y. Shazly G. Alfaraj R. Alsarra I. Alshamsan A. Gareeb Abdulhady H. Measurement and evaluation of the effects of pH gradients on the antimicrobial and antivirulence activities of chitosan nanoparticles in Pseudomonas aeruginosa. Saudi Pharm. J. 2018 26 1 79 83 10.1016/j.jsps.2017.10.009 29379337
    [Google Scholar]
  147. Carvalho L.D. Peres B.U. Maezono H. Shen Y. Haapasalo M. Jackson J. Carvalho R.M. Manso A.P. Doxycycline release and antibacterial activity from PMMA/PEO electrospun fiber mats. J. Appl. Oral Sci. 2019 27 e20180663 10.1590/1678‑7757‑2018‑0663 31596368
    [Google Scholar]
  148. Gaurav A. Kothari A. Omar B.J. Pathania R. Assessment of polymyxin B–doxycycline in combination against Pseudomonas aeruginosa in vitro and in a mouse model of acute pneumonia. Int. J. Antimicrob. Agents 2020 56 1 106022 10.1016/j.ijantimicag.2020.106022 32439481
    [Google Scholar]
  149. Jodlowski T. Ashby C.R. Nath S.G. Doxycycline for ESBL-E cystitis. Clin Infect Dis. 2021 73 e274 e275 10.1093/cid/ciaa1898
    [Google Scholar]
  150. Costa F.G. Horswill A.R. Overcoming pH defenses on the skin to establish infections. PLoS Pathog. 2022 18 5 e1010512 10.1371/journal.ppat.1010512 35617212
    [Google Scholar]
  151. Goy R.C. Morais S.T.B. Assis O.B.G. Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth. Rev. Bras. Farmacogn. 2016 26 1 122 127 10.1016/j.bjp.2015.09.010
    [Google Scholar]
  152. Tsai G.J. Su W.H. Antibacterial activity of shrimp chitosan against Escherichia coli. J. Food Prot. 1999 62 3 239 243 10.4315/0362‑028X‑62.3.239 10090242
    [Google Scholar]
  153. Ikono R. Vibriani A. Wibowo I. Saputro K.E. Muliawan W. Bachtiar B.M. Mardliyati E. Bachtiar E.W. Rochman N.T. Kagami H. Xianqi L. Nagamura-Inoue T. Tojo A. Nanochitosan antimicrobial activity against Streptococcus mutans and Candida albicans dual-species biofilms. BMC Res. Notes 2019 12 1 383 10.1186/s13104‑019‑4422‑x 31287001
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018377472250326061736
Loading
/content/journals/cdd/10.2174/0115672018377472250326061736
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test