Skip to content
2000
image of Biomimetic Brain-Targeted Drug Delivery System for the Treatment of Brain Diseases

Abstract

The blood-brain barrier (BBB) effectively blocks most drugs from entering the central nervous system, posing significant challenges to the treatment of brain diseases, such as cerebrovascular disorders, neurodegenerative conditions, and brain tumors. In recent years, biomimetic brain-targeted drug delivery systems (BBDDSs) have garnered substantial attention for their potential to overcome these obstacles. BBDDSs employ natural biological materials in combination with synthetic nanoparticles to create delivery systems that mimic endogenous biological processes, enabling the penetration of the BBB and facilitating brain-targeting efficacy. This paper reviews the preparation of BBDDS using cell membranes, proteins, lipoproteins, peptides, nanovesicles, and viruses, introduces their applications in various diseases, and outlines current challenges and future prospects for the use of BBDDS in therapeutic interventions.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018373397250303050206
2025-03-10
2025-05-04
Loading full text...

Full text loading...

References

  1. Qiu L. Zhu Z. Liang J. Qiao X. Xu H. Xiang H. Ding H. Chen Y. Micro/nanoparticle-enabled ultrasound therapy of brain diseases. Coord. Chem. Rev. 2024 500 215531 10.1016/j.ccr.2023.215531
    [Google Scholar]
  2. Wu D. Chen Q. Chen X. Han F. Chen Z. Wang Y. The blood–brain barrier: Structure, regulation and drug delivery. Signal Transduct. Target. Ther. 2023 8 1 217 10.1038/s41392‑023‑01481‑w 37231000
    [Google Scholar]
  3. Abbott N.J. Patabendige A.A.K. Dolman D.E.M. Yusof S.R. Begley D.J. Structure and function of the blood–brain barrier. Neurobiol. Dis. 2010 37 1 13 25 10.1016/j.nbd.2009.07.030 19664713
    [Google Scholar]
  4. Kim J. Ahn S.I. Kim Y. Nanotherapeutics engineered to cross the blood-brain barrier for advanced drug delivery to the central nervous system. J. Ind. Eng. Chem. 2019 73 8 18 10.1016/j.jiec.2019.01.021 31588177
    [Google Scholar]
  5. Zhou M. Chen H. Zeng Y. Lv Z. Hu X. Tong Y. Wang P. Zhao M. Mu R. Yu J. Chen Y. Wei L. Gu J. Lan Q. Zhen X. Han L. DH5α outer membrane‐coated biomimetic nanocapsules deliver drugs to brain metastases but not normal brain cells via targeting GRP94. Small 2023 19 35 2300403 10.1002/smll.202300403
    [Google Scholar]
  6. Li Y.J. Wu J.Y. Liu J. Qiu X. Xu W. Tang T. Xiang D.X. From blood to brain: Blood cell-based biomimetic drug delivery systems. Drug Deliv. 2021 28 1 1214 1225 10.1080/10717544.2021.1937384 34142628
    [Google Scholar]
  7. Chen Y. Wei C. Lyu Y. Chen H. Jiang G. Gao X. Biomimetic drug-delivery systems for the management of brain diseases. Biomater. Sci. 2020 8 4 1073 1088 10.1039/C9BM01395D 31728485
    [Google Scholar]
  8. Xu C.H. Ye P.J. Zhou Y.C. He D.X. Wei H. Yu C.Y. Cell membrane-camouflaged nanoparticles as drug carriers for cancer therapy. Acta Biomater. 2020 105 1 14 10.1016/j.actbio.2020.01.036 32001369
    [Google Scholar]
  9. Shi H. Wu C. Zhang G. Wang Z. Macrophage-mediated delivery of Fe 3 O 4 -Nanoparticles: A generalized strategy to deliver iron to tumor microenvironment. Curr. Drug Deliv. 2022 19 9 928 939 10.2174/1567201819666220426085450 35473528
    [Google Scholar]
  10. Qu Y. Chu B. Li J. Macrophage‐biomimetic nanoplatform‐based therapy for inflammation‐associated diseases. Small Methods 2023 8 7 e2301178 10.1002/smtd.202301178 38037521
    [Google Scholar]
  11. Mohammad-Rafiei F. Khojini J.Y. Ghazvinian F. Alimardan S. Norioun H. Tahershamsi Z. Tajbakhsh A. Gheibihayat S.M. Cell membrane biomimetic nanoparticles in drug delivery. Biotechnol. Appl. Biochem. 2023 70 6 1843 1859 10.1002/bab.2487 37387120
    [Google Scholar]
  12. Luk B.T. Zhang L. Cell membrane-camouflaged nanoparticles for drug delivery. J. Control. Release 2015 220 Pt B 600 607 10.1016/j.jconrel.2015.07.019 26210440
    [Google Scholar]
  13. Han X. Shen S. Fan Q. Chen G. Archibong E. Dotti G. Liu Z. Gu Z. Wang C. Red blood cell–derived nanoerythrosome for antigen delivery with enhanced cancer immunotherapy. Sci. Adv. 2019 5 10 eaaw6870 10.1126/sciadv.aaw6870 31681841
    [Google Scholar]
  14. Zhang W. Zhao M. Gao Y. Cheng X. Liu X. Tang S. Peng Y. Wang N. Hu D. Peng H. Zhang J. Wang Q. Biomimetic erythrocytes engineered drug delivery for cancer therapy. Chem. Eng. J. 2022 433 133498 10.1016/j.cej.2021.133498
    [Google Scholar]
  15. Chen M. Leng Y. He C. Li X. Zhao L. Qu Y. Wu Y. Red blood cells: A potential delivery system. J. Nanobiotechnology 2023 21 1 288 10.1186/s12951‑023‑02060‑5 37608283
    [Google Scholar]
  16. Javed S. Alshehri S. Shoaib A. Ahsan W. Sultan M.H. Alqahtani S.S. Kazi M. Shakeel F. Chronicles of nanoerythrosomes: An erythrocyte-based biomimetic smart drug delivery system as a therapeutic and diagnostic tool in cancer therapy. Pharmaceutics 2021 13 3 368 10.3390/pharmaceutics13030368 33802156
    [Google Scholar]
  17. Chu D. Dong X. Shi X. Zhang C. Wang Z. Neutrophil‐based drug delivery systems. Adv. Mater. 2018 30 22 1706245 10.1002/adma.201706245 29577477
    [Google Scholar]
  18. Han Y. Zhao R. Xu F. Neutrophil‐based delivery systems for nanotherapeutics. Small 2018 14 42 1801674 10.1002/smll.201801674 30144279
    [Google Scholar]
  19. Lopes J. Lopes D. Pereira-Silva M. Peixoto D. Veiga F. Hamblin M.R. Conde J. Corbo C. Zare E.N. Ashrafizadeh M. Tay F.R. Chen C. Donnelly R.F. Wang X. Makvandi P. Paiva-Santos A.C. Macrophage cell membrane‐cloaked nanoplatforms for biomedical applications. Small Methods 2022 6 8 2200289 10.1002/smtd.202200289 35768282
    [Google Scholar]
  20. Zhao H. Liu R. Wang L. Tang F. Chen W. Liu Y.N. Artificial macrophage with hierarchical nanostructure for biomimetic reconstruction of antitumor immunity. Nano-Micro Lett. 2023 15 1 216 10.1007/s40820‑023‑01193‑4 37737506
    [Google Scholar]
  21. Kunde S.S. Wairkar S. Platelet membrane camouflaged nanoparticles: Biomimetic architecture for targeted therapy. Int. J. Pharm. 2021 598 120395 10.1016/j.ijpharm.2021.120395 33639226
    [Google Scholar]
  22. Quan X. Han Y. Lu P. Ding Y. Wang Q. Li Y. Wei J. Huang Q. Wang R. Zhao Y. Annexin V‐modified platelet‐biomimetic nanomedicine for targeted therapy of acute ischemic stroke. Adv. Healthc. Mater. 2022 11 16 2200416 10.1002/adhm.202200416 35708176
    [Google Scholar]
  23. Cui J.W. Feng H.C. Xu C. Jiang D-Y. Zhang K-H. Gao N-N. Wang Y. Tian H. Liu C. Platelet membrane-encapsulated ginkgolide B biomimetic nanoparticles for the treatment of ischemic stroke. ACS Appl. Nano Mater. 2023 6 19 17560 17571 10.1021/acsanm.3c02620
    [Google Scholar]
  24. Liu H. Su Y.Y. Jiang X.C. Gao J.Q. Cell membrane-coated nanoparticles: A novel multifunctional biomimetic drug delivery system. Drug Deliv. Transl. Res. 2023 13 3 716 737 10.1007/s13346‑022‑01252‑0 36417162
    [Google Scholar]
  25. Sun H. Su J. Meng Q. Yin Q. Chen L. Gu W. Zhang P. Zhang Z. Yu H. Wang S. Li Y. Cancer‐cell‐biomimetic nanoparticles for targeted therapy of homotypic tumors. Adv. Mater. 2016 28 43 9581 9588 10.1002/adma.201602173 27628433
    [Google Scholar]
  26. Qu Y. Chu B. Wei X. Chen Y. Yang Y. Hu D. Huang J. Wang F. Chen M. Zheng Y. Qian Z. Cancer‐cell‐biomimetic nanoparticles for targeted therapy of multiple myeloma based on bone marrow homing. Adv. Mater. 2022 34 46 2107883 10.1002/adma.202107883 34877715
    [Google Scholar]
  27. Fan Y. Hao W. Cui Y. Chen M. Chu X. Yang Y. Wang Y. Gao C. Cancer cell membrane-coated nanosuspensions for enhanced chemotherapeutic treatment of glioma. Molecules 2021 26 16 5103 10.3390/molecules26165103 34443689
    [Google Scholar]
  28. Chen H.Y. Deng J. Wang Y. Wu C.Q. Li X. Dai H.W. Hybrid cell membrane-coated nanoparticles: A multifunctional biomimetic platform for cancer diagnosis and therapy. Acta Biomater. 2020 112 1 13 10.1016/j.actbio.2020.05.028 32470527
    [Google Scholar]
  29. Yu Y. Peng Y. Shen W.T. Zhou Z. Kai M Hybrid cell membrane‐coated nanoparticles for biomedical applications. Small Struct. 2024 5 5
    [Google Scholar]
  30. Wang D. Liu C. You S. Zhang K. Li M. Cao Y. Wang C. Dong H. Zhang X. Bacterial vesicle-cancer cell hybrid membrane-coated nanoparticles for tumor specific immune activation and photothermal therapy. ACS Appl. Mater. Interfaces 2020 12 37 41138 41147 10.1021/acsami.0c13169 32830477
    [Google Scholar]
  31. Hu H. Hua S.Y. Lin X. Lu F. Zhang W. Zhou L. Cui J. Wang R. Xia J. Xu F. Chen X. Zhou M. Hybrid biomimetic membrane coated particles-mediated bacterial ferroptosis for acute MRSA pneumonia. ACS Nano 2023 17 12 11692 11712 10.1021/acsnano.3c02365 37310363
    [Google Scholar]
  32. Kianfar E. Protein nanoparticles in drug delivery: Animal protein, plant proteins and protein cages, albumin nanoparticles. J. Nanobiotechnology 2021 19 1 159 10.1186/s12951‑021‑00896‑3 34051806
    [Google Scholar]
  33. Zhang Y. Wang J. Xing H. Liu C. Li X. Redox-responsive paclitaxel-pentadecanoic acid conjugate encapsulated human serum albumin nanoparticles for cancer therapy. Int. J. Pharm. 2023 635 122761 10.1016/j.ijpharm.2023.122761 36822341
    [Google Scholar]
  34. Shakeri S. Ashrafizadeh M. Zarrabi A. Roghanian R. Afshar E.G. Pardakhty A. Mohammadinejad R. Kumar A. Thakur V.K. Multifunctional polymeric nanoplatforms for brain diseases diagnosis, therapy and theranostics. Biomedicines 2020 8 1 13 10.3390/biomedicines8010013 31941057
    [Google Scholar]
  35. Zensi A. Begley D. Pontikis C. Legros C. Mihoreanu L. Wagner S. Büchel C. von Briesen H. Kreuter J. Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones. J. Control. Release 2009 137 1 78 86 10.1016/j.jconrel.2009.03.002 19285109
    [Google Scholar]
  36. Yeapuri P. Olson K.E. Lu Y. Abdelmoaty M.M. Namminga K.L. Markovic M. Machhi J. Mosley R.L. Gendelman H.E. Development of an extended half-life GM-CSF fusion protein for Parkinson’s disease. J. Control. Release 2022 348 951 965 10.1016/j.jconrel.2022.06.024 35738463
    [Google Scholar]
  37. Wang R. Wang X. Li J. Di L. Zhou J. Ding Y. Lipoprotein-biomimetic nanostructure enables tumor-targeted penetration delivery for enhanced photo-gene therapy towards glioma. Bioact. Mater. 2022 13 286 299 10.1016/j.bioactmat.2021.10.039 35224309
    [Google Scholar]
  38. Liang M. Gao C. Wang Y. Gong W. Fu S. Cui L. Zhou Z. Chu X. Zhang Y. Liu Q. Zhao X. Zhao B. Yang M. Li Z. Yang C. Xie X. Yang Y. Gao C. Enhanced blood–brain barrier penetration and glioma therapy mediated by T7 peptide-modified low-density lipoprotein particles. Drug Deliv. 2018 25 1 1652 1663 10.1080/10717544.2018.1494223 30394123
    [Google Scholar]
  39. Chernick D. Zhong R. Li L. The role of HDL and HDL mimetic peptides as potential therapeutics for Alzheimer’s disease. Biomolecules 2020 10 9 1276 10.3390/biom10091276 32899606
    [Google Scholar]
  40. Oller-Sal via B. Sánchez-Navarro M. Giralt E. Teixidó M. Blood–brain barrier shuttle peptides: An emerging paradigm for brain delivery. Chem. Soc. Rev. 2016 45 17 4690 4707 10.1039/C6CS00076B 27188322
    [Google Scholar]
  41. Zhou X. Smith Q.R. Liu X. Brain penetrating peptides and peptide–drug conjugates to overcome the blood–brain barrier and target CNS diseases. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2021 13 4 e1695 10.1002/wnan.1695 33470550
    [Google Scholar]
  42. Li X. Zhang Y. Wang Y. Chen Y. Xu T. Wang L. Gao J. Yang Z. A blood-brain barrier crossing peptide. Sci. China Mater. 2023 66 8 3327 3336 10.1007/s40843‑022‑2484‑1
    [Google Scholar]
  43. Aljabali A.A.A. Rezigue M. Obeid M.A. Serrano-Aroca A. Tambuwala M.M. Protein-based drug delivery nanomedicine platforms: Recent developments. Pharm. Nanotechnol. 2022 10 4 257 267 10.2174/2211738510666220817120307.
    [Google Scholar]
  44. Heddle J.G. Chakraborti S. Iwasaki K. Natural and artificial protein cages: Design, structure and therapeutic applications. Curr. Opin. Struct. Biol. 2017 43 148 155 10.1016/j.sbi.2017.03.007 28359961
    [Google Scholar]
  45. Mohanty A. Parida A. Raut R.K. Behera R.K. Ferritin: A promising nanoreactor and nanocarrier for bionanotechnology. ACS Bio. Med. Chem. Au 2022 2 3 258 281 10.1021/acsbiomedchemau.2c00003 37101573
    [Google Scholar]
  46. Kaltbeitzel J. Wich P.R. Protein‐based nanoparticles: From drug delivery to imaging, nanocatalysis and protein therapy. Angew. Chem. Int. Ed. 2023 62 44 e202216097 10.1002/anie.202216097 36917017
    [Google Scholar]
  47. You Q. Liang F. Wu G. Cao F. Liu J. He Z. Wang C. Zhu L. Chen X. Yang Y. The landscape of biomimetic nanovesicles in brain diseases. Adv. Mater. 2024 36 7 2306583 10.1002/adma.202306583 37713652
    [Google Scholar]
  48. van Niel G. D’Angelo G. Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 2018 19 4 213 228 10.1038/nrm.2017.125 29339798
    [Google Scholar]
  49. Jiang Y. Wang F. Wang K. Zhong Y. Wei X. Wang Q. Zhang H. Engineered exosomes: A promising drug delivery strategy for brain diseases. Curr. Med. Chem. 2022 29 17 3111 3124 10.2174/0929867328666210902142015 34477508
    [Google Scholar]
  50. Salarpour S. Barani M. Pardakhty A. Khatami M. Pal Singh Chauhan N. The application of exosomes and Exosome-nanoparticle in treating brain disorders. J. Mol. Liq. 2022 350 118549 10.1016/j.molliq.2022.118549
    [Google Scholar]
  51. Choi H. Choi K. Kim D.H. Oh B.K. Yim H. Jo S. Choi C. Strategies for targeted delivery of exosomes to the brain: Advantages and challenges. Pharmaceutics 2022 14 3 672 10.3390/pharmaceutics14030672 35336049
    [Google Scholar]
  52. Chan K.Y. Jang M.J. Yoo B.B. Greenbaum A. Ravi N. Wu W.L. Sánchez-Guardado L. Lois C. Mazmanian S.K. Deverman B.E. Gradinaru V. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat. Neurosci. 2017 20 8 1172 1179 10.1038/nn.4593 28671695
    [Google Scholar]
  53. Nowak I. Madej M. Secemska J. Sarna R. Strzalka-Mrozik B. Virus-based biological systems as next-generation carriers for the therapy of central nervous system diseases. Pharmaceutics 2023 15 7 1931 10.3390/pharmaceutics15071931 37514117
    [Google Scholar]
  54. Umaña J.D. Wasserman S.R. Song L. Goel A.A. Yu X. Jin J. Hathaway N.A. Chemical epigenetic regulation of adeno-associated virus delivered transgenes. Hum. Gene Ther. 2023 34 17-18 947 957 10.1089/hum.2023.005 37624737
    [Google Scholar]
  55. Savenkova D.A. Makarova A.L.A. Shalik I.K. Yudkin D.V. miRNA pathway alteration in response to non-coding RNA delivery in viral vector-based gene therapy. Int. J. Mol. Sci. 2022 23 23 14954 10.3390/ijms232314954 36499289
    [Google Scholar]
  56. Chen W. Yao S. Wan J. Tian Y. Huang L. Wang S. Akter F. Wu Y. Yao Y. Zhang X. BBB-crossing adeno-associated virus vector: An excellent gene delivery tool for CNS disease treatment. J. Control. Release 2021 333 129 138 10.1016/j.jconrel.2021.03.029 33775685
    [Google Scholar]
  57. Gernoux G. Gruntman A.M. Blackwood M. Zieger M. Flotte T.R. Mueller C. Muscle-directed delivery of an AAV1 vector leads to capsid-specific T cell exhaustion in nonhuman primates and humans. Mol. Ther. 2020 28 3 747 757 10.1016/j.ymthe.2020.01.004 31982038
    [Google Scholar]
  58. Zhao L. Yang Z. Zheng M. Shi L. Gu M. Liu G. Miao F. Chang Y. Huang F. Tang N. Recombinant adeno-associated virus 8 vector in gene therapy: Opportunities and challenges. Genes Dis. 2024 11 1 283 293 10.1016/j.gendis.2023.02.010 37588223
    [Google Scholar]
  59. Wu Y. Yang J. Geng Y. Jiao X. Lu Z. Zhang T. Zhao R. Guo J. Wang W. Wang J. Zhang X. A biomimic nanobullet with ameliorative inflammatory microenvironment for Alzheimer’s Disease treatments. Adv. Healthc. Mater. 2024 13 6 2302851 10.1002/adhm.202302851 37934884
    [Google Scholar]
  60. Sun T. Kwong C.H.T. Gao C. Wei J. Yue L. Zhang J. Ye R.D. Wang R. Amelioration of ulcerative colitis via inflammatory regulation by macrophage-biomimetic nanomedicine. Theranostics 2020 10 22 10106 10119 10.7150/thno.48448 32929337
    [Google Scholar]
  61. Zhang L. Zhang W. Peng H. Shen T. Wang M. Luo M. Qu X. Qu F. Liu W. Lei B. Yang S. Bioactive cytomembrane@poly(citrate-peptide)-miRNA365 nanoplatform with immune escape and homologous targeting for colon cancer therapy. Mater. Today Bio 2022 15 100294 10.1016/j.mtbio.2022.100294 35620794
    [Google Scholar]
  62. Luk B.T. Jiang Y. Copp J.A. Hu C.M.J. Krishnan N. Gao W. Li S. Fang R.H. Zhang L. Biomimetic targeting of nanoparticles to immune cell subsets via cognate antigen interactions. Mol. Pharm. 2018 15 9 3723 3728 10.1021/acs.molpharmaceut.8b00074 29533668
    [Google Scholar]
  63. Fang R.H. Kroll A.V. Gao W. Zhang L. Cell membrane coating nanotechnology. Adv. Mater. 2018 30 23 1706759 10.1002/adma.201706759 29582476
    [Google Scholar]
  64. Sudhakar B. Murthy K. R. NagaJyothi K. Nanosuspensions as a versatile carrier based drug delivery system–an overview. Curr. Drug Deliv. 2014 11 3 299 305 10.2174/1567201811666140323131342 24655052
    [Google Scholar]
  65. Zoroddu M. Medici S. Ledda A. Nurchi V. Lachowicz J. Peana M. Toxicity of nanoparticles. Curr. Med. Chem. 2014 21 33 3837 3853 10.2174/0929867321666140601162314 25306903
    [Google Scholar]
  66. Wufuer Y. Shan X. Sailike M. Adilaimu K. Ma S. Wang H. GPVI-Fc-PEG improves cerebral infarct volume and cerebral thrombosis in mouse model with cerebral thrombosis. Mol. Med. Rep. 2017 16 5 7561 7568 10.3892/mmr.2017.7556 28944903
    [Google Scholar]
  67. Priya V. Viswanadh M.K. Mehata A.K. Jain D. Singh S.K. Muthu M.S. Targeted nanotherapeutics in the prophylaxis and treatment of thrombosis. Nanomedicine (Lond.) 2021 16 13 1153 1176 10.2217/nnm‑2021‑0058 33973818
    [Google Scholar]
  68. Deng J. Mei H. Shi W. Pang Z. Zhang B. Guo T. Wang H. Jiang X. Hu Y. Recombinant tissue plasminogen activator-conjugated nanoparticles effectively targets thrombolysis in a rat model of middle cerebral artery occlusion. Curr. Med. Sci. 2018 38 3 427 435 10.1007/s11596‑018‑1896‑z 30074208
    [Google Scholar]
  69. Zhou H. Wei Y.J. Xie G.Y. Research progress on post-stroke depression. Exp. Neurol. 2024 373 114660 10.1016/j.expneurol.2023.114660 38141804
    [Google Scholar]
  70. Li Y.X. Wang H.B. Jin J.B. Yang C.L. Hu J.B. Li J. Advances in the research of nano delivery systems in ischemic stroke. Front. Bioeng. Biotechnol. 2022 10 984424 10.3389/fbioe.2022.984424 36338131
    [Google Scholar]
  71. Jiang B. Wang X. Ma J. Fayyaz A. Wang L. Qin P. Ding Y. Ji X. Li S. Remote ischemic conditioning after stroke: Research progress in clinical study. CNS Neurosci. Ther. 2024 30 4 e14507 10.1111/cns.14507 37927203
    [Google Scholar]
  72. Ding L. Lyu Z. Perles‐Barbacaru T.A. Modular Self‐assembling dendrimer nanosystems for magnetic resonance and multimodality imaging of tumors. Adv. Mater. 2023 36 7 2308262 10.1002/adma.202308262 38030568
    [Google Scholar]
  73. Das R.S. Maiti D. Kar S. Bera T. Mukherjee A. Saha P.C. Mondal A. Guha S. Design of Water–soluble rotaxane-capped superparamagnetic, ultrasmall Fe3O4 nanoparticles for targeted NIR fluorescence imaging in combination with magnetic resonance imaging. J. Am. Chem. Soc. 2023 145 37 20451 20461 10.1021/jacs.3c06232 37694929
    [Google Scholar]
  74. Bertram L. Tanzi R.E. Genomic mechanisms in Alzheimer’s disease. Brain Pathol. 2020 30 5 966 977 10.1111/bpa.12882 32657454
    [Google Scholar]
  75. Tam K.Y. Ju Y. Pathological mechanisms and therapeutic strategies for Alzheimer’s disease. Neural Regen. Res. 2022 17 3 543 549 10.4103/1673‑5374.320970 34380884
    [Google Scholar]
  76. Bloem B.R. Okun M.S. Klein C. Parkinson’s disease. Lancet 2021 397 10291 2284 2303 10.1016/S0140‑6736(21)00218‑X 33848468
    [Google Scholar]
  77. Morris H.R. Spillantini M.G. Sue C.M. Williams-Gray C.H. The pathogenesis of Parkinson’s disease. Lancet 2024 403 10423 293 304 10.1016/S0140‑6736(23)01478‑2 38245249
    [Google Scholar]
  78. Liu Y. Luo J. Liu Y. Liu W. Yu G. Huang Y. Yang Y. Chen X. Chen T. Brain-targeted biomimetic nanodecoys with neuroprotective effects for precise therapy of Parkinson’s disease. ACS Cent. Sci. 2022 8 9 1336 1349 10.1021/acscentsci.2c00741 36188350
    [Google Scholar]
  79. Chaudhuri T.R. Straubinger R.M. Nanoparticles for brain tumor delivery. Nervous System Drug Delivery. Elsevier 2019 229 250 10.1016/B978‑0‑12‑813997‑4.00012‑8
    [Google Scholar]
  80. Lu G. Wang X. Li F. Wang S. Zhao J. Wang J. Liu J. Lyu C. Ye P. Tan H. Li W. Ma G. Wei W. Engineered biomimetic nanoparticles achieve targeted delivery and efficient metabolism-based synergistic therapy against glioblastoma. Nat. Commun. 2022 13 1 4214 10.1038/s41467‑022‑31799‑y 35864093
    [Google Scholar]
  81. Ling Y. Ramalingam M. Lv X. Zeng Y. Qiu Y. Si Y. Pedraz J.L. Kim H.W. Hu J. Recent advances in nanomedicine development for traumatic brain injury. Tissue Cell 2023 82 102087 10.1016/j.tice.2023.102087 37060747
    [Google Scholar]
  82. Semenova Z.B. Meshcheryakov S. Lukyanov V. Arsenyev S. Decompressive craniectomy for traumatic intracranial hypertension in children. Acta Neurochir. Suppl. (Wien) 2021 131 109 113 10.1007/978‑3‑030‑59436‑7_23 33839829
    [Google Scholar]
  83. Khanam N Nath D. Traumatic brain injury: Future application of nanomedicine GSC Adv. Res. Rev. 2021 6 2 020 027
    [Google Scholar]
  84. Zinger A. Soriano S. Baudo G. De Rosa E. Taraballi F. Villapol S. Biomimetic nanoparticles as a theranostic tool for traumatic brain injury. Adv. Funct. Mater. 2021 31 30 2100722 10.1002/adfm.202100722 34413716
    [Google Scholar]
  85. Liu X. Wu C. Zhang Y. Chen S. Ding J. Chen Z. Wu K. Wu X. Zhou T. Zeng M. Wei D. Sun J. Fan H. Zhou L. Hyaluronan-based hydrogel integrating exosomes for traumatic brain injury repair by promoting angiogenesis and neurogenesis. Carbohydr. Polym. 2023 306 120578 10.1016/j.carbpol.2023.120578 36746568
    [Google Scholar]
  86. Yehuda R. Hoge C.W. McFarlane A.C. Vermetten E. Lanius R.A. Nievergelt C.M. Hobfoll S.E. Koenen K.C. Neylan T.C. Hyman S.E. Post-traumatic stress disorder. Nat. Rev. Dis. Primers 2015 1 1 15057 10.1038/nrdp.2015.57 27189040
    [Google Scholar]
  87. Li Q. Wang C. Hu J. Jiao W. Tang Z. Song X. Wu Y. Dai J. Gao P. Du L. Jin Y. Cannabidiol–loaded biomimetic macrophage membrane vesicles against post–traumatic stress disorder assisted by ultrasound. Int. J. Pharm. 2023 637 122872 10.1016/j.ijpharm.2023.122872 36958611
    [Google Scholar]
  88. Ferreira N.N. Leite C.M. Moreno N.S. Miranda R.R. Pincela Lins P.M. Rodero C.F. de Oliveira Junior E. Lima E.M. Reis R.M. Zucolotto V. Nose-to-brain delivery of biomimetic nanoparticles for glioblastoma targeted therapy. ACS Appl. Mater. Interfaces 2025 17 1 484 499 10.1021/acsami.4c16837 39692595
    [Google Scholar]
  89. Geng C. Ren X. Cao P. Chu X. Wei P. Liu Q. Lu Y. Fu B. Li W. Li Y. Zhao G. Macrophage membrane‒biomimetic nanoparticles target inflammatory microenvironment for epilepsy treatment. Theranostics 2024 14 17 6652 6670 10.7150/thno.99260 39479447
    [Google Scholar]
  90. Mustafa G. Hassan D. Zeeshan M. Ruiz-Pulido G. Ebrahimi N. Mobashar A. Pourmadadi M. Rahdar A. Sargazi S. Fathi-karkan S. Medina D.I. Díez-Pascual A.M. Advances in nanotechnology versus stem cell therapy for the theranostics of Huntington’s disease. J. Drug Deliv. Sci. Technol. 2023 87 104774 10.1016/j.jddst.2023.104774
    [Google Scholar]
  91. Cao Y. Han Z. Zhu L. He Z. Mou N. Duan X. Chen Q. Qin X. Zhang K. Qu K. Zhong Y. Wu W. Red blood cell membrane spontaneously coated nanoprodrug based on phosphatidylserine for antiatherosclerosis applications. ACS Appl. Mater. Interfaces 2024 16 35 46578 46589 10.1021/acsami.4c07720 39172072
    [Google Scholar]
  92. Zheng T. Sheng J. Wang Z. Wu H. Zhang L. Wang S. Li J. Zhang Y. Lu G. Zhang L. Injured myocardium‐targeted theranostic nanoplatform for multi‐dimensional immune‐inflammation regulation in acute myocardial infarction. Adv. Sci. (Weinh.) 2025 Epub ahead of print. 10.1002/advs.202414740 39836506
    [Google Scholar]
  93. Guo T. Chen L. Li F. Cao Y. Li D. Xiong Q. Ling Z. Biomimetic nanoparticles loaded lutein functionalized by macrophage membrane for targeted amelioration pressure overload-induced cardiac fibrosis. Biomed. Pharmacother. 2023 167 115579 115579 10.1016/j.biopha.2023.115579 37776637
    [Google Scholar]
  94. Li Y. Yu J. Cheng C. Chen W. Lin R. Wang Y. Cui W. Meng J. Du J. Wang Y. Platelet and erythrocyte membranes coassembled biomimetic nanoparticles for heart failure treatment. ACS Nano 2024 18 39 26614 26630 10.1021/acsnano.4c04814 39174015
    [Google Scholar]
  95. Chen J. Zeng S. Xue Q. Hong Y. Liu L. Song L. Fang C. Zhang H. Wang B. Sedgwick A.C. Zhang P. Sessler J.L. Liu C. Chen J. Photoacoustic image-guided biomimetic nanoparticles targeting rheumatoid arthritis. Proc. Natl. Acad. Sci. USA 2022 119 43 e2213373119 10.1073/pnas.2213373119 36256822
    [Google Scholar]
  96. Xubin H. Hui Z. Rui L. Zhang D. Liang L. Sun L. Red blood cell membrane functionalized biomimetic nanoparticles for systemic lupus erythematosus treatment. Mater. Today Adv. 2022 16 100294
    [Google Scholar]
  97. Wang Y. Ding Q. Ma G. Zhang Z. Wang J. Lu C. Xiang C. Qian K. Zheng J. Shan Y. Zhang P. Cheng Z. Gong P. Zhao Q. Mucus-penetrable biomimetic nanoantibiotics for pathogen-induced pneumonia treatment. ACS Nano 2024 18 45 31349 31359 10.1021/acsnano.4c10837 39485232
    [Google Scholar]
  98. Xiao C. Tong C. Fan J. Wang Z. Xie Q. Long Y. You P. Wang W. Liu B. Biomimetic nanoparticles loading with gamabutolin-indomethacin for chemo/photothermal therapy of cervical cancer and anti-inflammation. J. Control. Release 2021 339 259 273 10.1016/j.jconrel.2021.09.034 34597747
    [Google Scholar]
  99. Gao R. Lin P. Yang W. Fang Z. Gao C. Cheng B. Fang J. Yu W. Bio-inspired nanodelivery platform: Platelet membrane-cloaked genistein nanosystem for targeted lung cancer therapy. Int. J. Nanomedicine 2024 19 10455 10478 10.2147/IJN.S479438 39430311
    [Google Scholar]
  100. Gao G. Che J. Xu P. Chen B. Zhao Y. Biomimetic cell membrane decorated ZIF‐8 nanocarriers with IR‐780 and doxorubicin loading for multiple myeloma treatment. Aggregate 2024 5 6 e631 10.1002/agt2.631
    [Google Scholar]
  101. Wang X. Tian R. Liang C. Jia Y. Zhao L. Xie Q. Huang F. Yuan H. Biomimetic nanoplatform with microbiome modulation and antioxidant functions ameliorating insulin resistance and pancreatic β-cell dysfunction for T2DM management. Biomaterials 2025 313 122804 10.1016/j.biomaterials.2024.122804 39236631
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018373397250303050206
Loading
/content/journals/cdd/10.2174/0115672018373397250303050206
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test