Skip to content
2000
image of Soluplus Stabilized Amorphous Dispersions for Enhanced Oral Absorption of Felodipine

Abstract

Background

Overcoming the poor aqueous solubility of small-molecule drugs is a major challenge in developing clinical pharmaceuticals. Felodipine (FLDP), an L-type calcium calcium channel blocker, is a poorly water-soluble drug.

Objectives

The study aimed to explore the potential applications of polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol (Soluplus) stabilized amorphous dispersions for augmenting the oral delivery of poorly water-soluble drugs.

Methods

Soluplus-stabilized amorphous FLDP (FLDP-SSAs) was prepared using a two-phase mixing method. The samples were analyzed for their microscopic and macroscopic behavior using polarized light microscopy (PLM), differential scanning calorimetry (DSC), molecular simulation, and dissolution studies. Subsequently, the pharmacokinetics of FLDP-SSAs were evaluated.

Results

The maximum drug-to-Soluplus mass ratio of FLDP-SSAs was 50:50, with a drug concentration of 8.0 mg/mL. They exhibited an amorphous nature, as confirmed by PLM and DSC. FLDP-SSAs generated nanoparticles with a particle size of approximately 50 nm during dissolution. Compared to FLDP oral solution, FLDP-SSAs exhibited higher solubility due to their amorphous nature and the generation of nanoparticles. The area under the curve (AUC) for oral FLDP-SSAs was 16.7-fold larger than that of the FLDP suspension.

Conclusion

FLDP-SSAs could stabilize FLDP in an amorphous state and serve as drug carriers to enhance oral absorption.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018363757241216061705
2025-01-16
2025-07-04
Loading full text...

Full text loading...

References

  1. Zhong H. Chan G. Hu Y. Hu H. Ouyang D. A comprehensive map of FDA-approved pharmaceutical products. Pharmaceutics 2018 10 4 263 10.3390/pharmaceutics10040263 30563197
    [Google Scholar]
  2. Huzjak T. Jakasanovski O. Berginc K. Puž V. Zajc-Kreft K. Jeraj Ž. Janković B. Overcoming drug impurity challenges in amorphous solid dispersion with rational development of biorelevant dissolution-permeation method. Eur. J. Pharm. Sci. 2024 192 1 106655 10.1016/j.ejps.2023.106655 38016626
    [Google Scholar]
  3. Bhalani D.V. Nutan B. Kumar A. Singh Chandel A.K. Bioavailability enhancement techniques for poorly aqueous soluble drugs and therapeutics. Biomedicines 2022 10 9 2055 10.3390/biomedicines10092055 36140156
    [Google Scholar]
  4. Da Silva F.L.O. Marques M.B.D.F. Kato K.C. Carneiro G. Nanonization techniques to overcome poor water-solubility with drugs. Expert Opin. Drug Discov. 2020 15 7 853 864 10.1080/17460441.2020.1750591 32290727
    [Google Scholar]
  5. Yang R. Zhang G.G.Z. Zemlyanov D.Y. Purohit H.S. Taylor L.S. Release mechanisms of amorphous solid dispersions: Role of drug-polymer phase separation and morphology. J. Pharm. Sci. 2023 112 1 304 317 10.1016/j.xphs.2022.10.021 36306863
    [Google Scholar]
  6. Saharawat S. Verma S. A comprehensive review on niosomes as a strategy in targeted drug delivery: pharmaceutical, and herbal cosmetic applications. Curr. Drug Deliv. 2024 21 11 1460 1473 10.2174/0115672018269199231121055548 38231066
    [Google Scholar]
  7. Duong V.A. Nguyen T.T.L. Maeng H.J. Recent advances in intranasal liposomes for drug, gene, and vaccine delivery. Pharmaceutics 2023 15 1 207 10.3390/pharmaceutics15010207 36678838
    [Google Scholar]
  8. Zaafar D. Khalil H.M.A. Elkhouly G.E. Sedeky A.S. Ahmed Y.H. Khalil M.G. Abo-zeid Y. Preparation and characterization of Sorafenib nano-emulsion: impact on pharmacokinetics and toxicity; an in vitro and in vivo study. Drug Deliv. Transl. Res. 2024 14 11 3089 3111 10.1007/s13346‑024‑01530‑z 38430357
    [Google Scholar]
  9. Okur N.Ü. Çağlar E.Ş. Kaynak M.S. Diril M. Özcan S. Karasulu H.Y. Enhancing oral bioavailability of domperidone maleate: formulation, Iin vitro permeability evaluation In-caco-2 cell monolayers and in situ rat intestinal permeability studies. Curr. Drug Deliv. 2024 21 7 1010 1023 10.2174/1567201820666230214091509 36786136
    [Google Scholar]
  10. Zhao P. Han W. Shu Y. Li M. Sun Y. Sui X. Liu B. Tian B. Liu Y. Fu Q. Liquid–liquid phase separation drug aggregate: Merit for oral delivery of amorphous solid dispersions. J. Control. Release 2023 353 42 50 10.1016/j.jconrel.2022.11.033 36414193
    [Google Scholar]
  11. Baek M.J. Park J.H. Nguyen D.T. Kim D. Kim J. Kang I.M. Kim D.D. Bentonite as a water-insoluble amorphous solid dispersion matrix for enhancing oral bioavailability of poorly water-soluble drugs. J. Control. Release 2023 363 525 535 10.1016/j.jconrel.2023.09.051 37797889
    [Google Scholar]
  12. Zhang J. Guo M. Luo M. Cai T. Advances in the development of amorphous solid dispersions: The role of polymeric carriers. Asian Journal of Pharmaceutical Sciences 2023 18 4 100834 10.1016/j.ajps.2023.100834 37635801
    [Google Scholar]
  13. Rocha B. de Morais L.A. Viana M.C. Carneiro G. Promising strategies for improving oral bioavailability of poor water-soluble drugs. Expert Opin. Drug Discov. 2023 18 6 615 627 10.1080/17460441.2023.2211801 37157841
    [Google Scholar]
  14. Uttaro E. Pudipeddi M. Schweighardt A. Zhao F. To crush or not to crush: A brief review of novel tablets and capsules prepared from nanocrystal and amorphous solid dispersion technologies. Am. J. Health Syst. Pharm. 2021 78 5 389 394 10.1093/ajhp/zxaa412 33354708
    [Google Scholar]
  15. Ueda K. Higashi K. Moribe K. Mechanistic elucidation of formation of drug-rich amorphous nanodroplets by dissolution of the solid dispersion formulation. Int. J. Pharm. 2019 561 82 92 10.1016/j.ijpharm.2019.02.034 30822504
    [Google Scholar]
  16. Stewart A.M. Grass M.E. Practical approach to modeling the impact of amorphous drug nanoparticles on the oral absorption of poorly soluble drugs. Mol. Pharm. 2020 17 1 180 189 10.1021/acs.molpharmaceut.9b00889 31743032
    [Google Scholar]
  17. Yuan C. Zhang C. Guan X. Yuan D. The solid dispersion of resveratrol with enhanced dissolution and good system physical stability. J. Dispers. Sci. Technol. 2023 84 104507
    [Google Scholar]
  18. Guo X. Guo Y. Zhang M. Yang B. Liu H. Yin T. Zhang Y. He H. Wang Y. Liu D. Gou J. Tang X. A comparative study on in vitro and in vivo characteristics of enzalutamide nanocrystals versus amorphous solid dispersions and a better prediction for bioavailability based on “spring-parachute” model. Int. J. Pharm. 2022 628 122333 10.1016/j.ijpharm.2022.122333 36283642
    [Google Scholar]
  19. Mamidi H. Palekar S. Patel H. Nukala P.K. Patel K. Formulation strategies for the development of high drug-loaded amorphous solid dispersions. Drug Discov. Today 2023 28 12 103806 10.1016/j.drudis.2023.103806 37890714
    [Google Scholar]
  20. Becelaere J. Van Den Broeck E. Schoolaert E. Vanhoorne V. Van Guyse J.F.R. Vergaelen M. Borgmans S. Creemers K. Van Speybroeck V. Vervaet C. Hoogenboom R. De Clerck K. Stable amorphous solid dispersion of flubendazole with high loading via electrospinning. J. Control. Release 2022 351 123 136 10.1016/j.jconrel.2022.09.028 36122898
    [Google Scholar]
  21. Li S. Zhang Z. Gu W. Gallas M. Jones D. Boulet P. Johnson L.M. de Margerie V. Andrews G.P. Hot melt extruded high-dose amorphous solid dispersions containing lumefantrine and Soluplus. Int. J. Pharm. 2024 665 124676 10.1016/j.ijpharm.2024.124676 39255876
    [Google Scholar]
  22. Mucha I. Karolewicz B. Górniak A. Stability studies of amorphous ibrutinib prepared using the quench-cooling method and its dispersions with Soluplus®. Polymers (Basel) 2024 16 14 1961 10.3390/polym16141961 39065278
    [Google Scholar]
  23. Twal S. Jaber N. Al-Remawi M. Hamad I. Al-Akayleh F. Alshaer W. Dual stimuli-responsive polymeric nanoparticles combining soluplus and chitosan for enhanced breast cancer targeting. RSC Advances 2024 14 5 3070 3084 10.1039/D3RA08074A 38239437
    [Google Scholar]
  24. Ugorji O.L. Okoye O.I. Nwangwu C. Agbo C.P. Kenechukwu F.C. Soluplus-stabilized 5-fluorouracil-entrapped niosomal formulations prepared via active and passive loading techniques: comparative physico-chemical evaluation. J. Dispers. Sci. Technol. 2024 45 5 891 899 10.1080/01932691.2023.2186427
    [Google Scholar]
  25. Attia M.S. Elsebaey M.T. Yahya G. Chopra H. Marzouk M.A. Yahya A. Abdelkhalek A.S. Pharmaceutical polymers and P-glycoprotein: Current trends and possible outcomes in drug delivery. Mater. Today Commun. 2023 34 105318 10.1016/j.mtcomm.2023.105318
    [Google Scholar]
  26. He X. Peng Y. Huang S. Xiao Z. Li G. Zuo Z. Zhang L. Shuai X. Zheng H. Hu X. Blood brain barrier-crossing delivery of felodipine nanodrug ameliorates anxiety-like behavior and cognitive impairment in alzheimer’s disease. Adv. Sci. 2024 11 34 2401731 10.1002/advs.202401731 38981028
    [Google Scholar]
  27. Hwang J.W. Kim J. Park J.H. Nam J. Jang J.Y. Jo A. Lee H. Hoe H.S. Felodipine attenuates neuroinflammatory responses and tau hyperphosphorylation through JNK/P38 signaling in tau-overexpressing AD mice. Mol. Brain 2024 17 1 62 10.1186/s13041‑024‑01137‑y 39223564
    [Google Scholar]
  28. Abou-Hany H.O. El-Sherbiny M. Elshaer S. Said E. Moustafa T. Neuro-modulatory impact of felodipine against experimentally-induced Parkinson’s disease: Possible contribution of PINK1-Parkin mitophagy pathway. Neuropharmacology 2024 250 109909 10.1016/j.neuropharm.2024.109909 38494124
    [Google Scholar]
  29. Lin J. Pang D. Li C. Ou R. Yu Y. Cui Y. Huang J. Shang H. Calcium channel blockers and Parkinson’s disease: a systematic review and meta-analysis. Ther. Adv. Neurol. Disord. 2024 17 17562864241252713 10.1177/17562864241252713 38770432
    [Google Scholar]
  30. Karavas E. Ktistis G. Xenakis A. Georgarakis E. Miscibility behavior and formation mechanism of stabilized felodipine-polyvinylpyrrolidone amorphous solid dispersions. Drug Dev. Ind. Pharm. 2005 31 6 473 489 10.1080/03639040500215958 16109621
    [Google Scholar]
  31. Zhang S. Cui D. Xu J. Wang J. Wei Q. Xiong S. Bile acid transporter mediated STC/Soluplus self-assembled hybrid nanoparticles for enhancing the oral drug bioavailability. Int. J. Pharm. 2020 579 119120 10.1016/j.ijpharm.2020.119120 32035254
    [Google Scholar]
  32. Wang J. Zhang S. Tan C. Wei Q. Xiong S. Simultaneously inhibiting P-gp efflux and drug recrystallization enhanced the oral bioavailability of nintedanib. Curr. Pharm. Biotechnol. 2023 24 15 1972 1982 10.2174/1389201024666230417091625 37066771
    [Google Scholar]
  33. Tho I. Liepold B. Rosenberg J. Maegerlein M. Brandl M. Fricker G. Formation of nano/micro-dispersions with improved dissolution properties upon dispersion of ritonavir melt extrudate in aqueous media. Eur. J. Pharm. Sci. 2010 40 1 25 32 10.1016/j.ejps.2010.02.003 20172027
    [Google Scholar]
  34. Zhang X. Xing H. Zhao Y. Ma Z. Pharmaceutical dispersion techniques for dissolution and bioavailability enhancement of poorly water-soluble drugs. Pharmaceutics 2018 10 3 74 10.3390/pharmaceutics10030074 29937483
    [Google Scholar]
  35. Liw J.J. Teoh X.Y. Teoh A.X.Y. Chan S.Y. The effect of carrier-drug ratios on dissolution performances of poorly soluble drug in crystalline solid dispersion system. J. Pharm. Sci. 2022 111 1 95 101 10.1016/j.xphs.2021.06.026 34174289
    [Google Scholar]
  36. Sarpal K. Munson E.J. Amorphous solid dispersions of felodipine and nifedipine with Soluplus®: Drug-polymer miscibility and intermolecular interactions. J. Pharm. Sci. 2021 110 4 1457 1469 10.1016/j.xphs.2020.12.022 33359813
    [Google Scholar]
  37. Chen Y. Huang W. Chen J. Wang H. Zhang S. Xiong S. The synergetic effects of nonpolar and polar protic solvents on the properties of felodipine and Soluplus in solutions, casting films, and spray-dried solid dispersions. J. Pharm. Sci. 2018 107 6 1615 1623 10.1016/j.xphs.2018.02.006 29454624
    [Google Scholar]
  38. Liu L. Chen L. Müllers W. Serno P. Qian F. Water-resistant drug-polymer interaction contributes to the formation of nano-species during the dissolution of felodipine amorphous solid dispersions. Mol. Pharm. 2022 19 8 2888 2899 10.1021/acs.molpharmaceut.2c00250 35759395
    [Google Scholar]
  39. Mora-Castaño G. Millán-Jiménez M. Niederquell A. Schönenberger M. Shojaie F. Kuentz M. Caraballo I. Amorphous solid dispersion of a binary formulation with felodipine and HPMC for 3D printed floating tablets. Int. J. Pharm. 2024 658 124215 10.1016/j.ijpharm.2024.124215 38740104
    [Google Scholar]
  40. Deac A. Qi Q. Indulkar A.S. Purohit H.S. Gao Y. Zhang G.G.Z. Taylor L.S. Dissolution mechanisms of amorphous solid dispersions: role of drug load and molecular interactions. Mol. Pharm. 2023 20 1 722 737 10.1021/acs.molpharmaceut.2c00892 36545917
    [Google Scholar]
  41. Pandey M.M. Jaipal A. Charde S.Y. Goel P. Kumar L. Dissolution enhancement of felodipine by amorphous nanodispersions using an amphiphilic polymer: insight into the role of drug-polymer interactions on drug dissolution. Pharm. Dev. Technol. 2016 21 4 463 474 25777532
    [Google Scholar]
  42. Tulain U.R. Erum A. Maryam B. Sidra Malik N.S. Shahid N. Malik A. Malik M.Z. An approach to enhance drug solubility: fabrication, characterization, and safety evaluation of Felodipine polymeric nanoparticles. Polym. Bull. 2024 81 17 16197 16217 10.1007/s00289‑024‑05458‑9
    [Google Scholar]
  43. Guo W. Li C. Du P. Wang Y. Zhao S. Wang J. Yang C. Thermal properties of drug polymorphs: A case study with felodipine form I and form IV. J. Saudi Chem. Soc. 2020 24 6 474 483 10.1016/j.jscs.2020.04.003
    [Google Scholar]
  44. BASF. Technical Information, Soluplus®. 2023 Available from: https://pharma.basf.com/technicalinformation/30446233/solupluwebs (Accessed on: April 11, 2023).
  45. Desai P. Chatterjee B. Comparison of two grafted copolymers, Soluplus and Kollicoat IR, as solid dispersion carriers of arteether for oral delivery prepared by different solvent-based methods. ACS Omega 2023 8 48 45337 45347 10.1021/acsomega.3c04110 38075813
    [Google Scholar]
  46. Fan T. Chen L. Xia X. Wu Y. Zhang J. Yin K. Liu F. Yan Z. Dissipative particle dynamics quantitative simulation of the formation mechanism and emulsification driving force of deep eutectic solvent-based surfactant-free and water-free microemulsion. Ind. Eng. Chem. Res. 2021 60 7 3249 3258 10.1021/acs.iecr.0c06193
    [Google Scholar]
  47. Saboo S. Moseson D.E. Kestur U.S. Taylor L.S. Patterns of drug release as a function of drug loading from amorphous solid dispersions: A comparison of five different polymers. Eur. J. Pharm. Sci. 2020 155 105514 10.1016/j.ejps.2020.105514 32810579
    [Google Scholar]
  48. Purohit H.S. Zhou D. Yu M. Zaroudi M. Oberoi H. López A.L.R. Kelkar M.S. He Y. Gates B. Nere N. Law D. Proof-of-concept in developing a 45% drug loaded amorphous nanoparticle formulation. J. Pharm. Sci. 2024 113 4 1007 1019 10.1016/j.xphs.2023.10.012 37832919
    [Google Scholar]
  49. Lu J. Cuellar K. Hammer N.I. Jo S. Gryczke A. Kolter K. Langley N. Repka M.A. Solid-state characterization of Felodipine–Soluplus amorphous solid dispersions. Drug Dev. Ind. Pharm. 2016 42 3 485 496 10.3109/03639045.2015.1104347 26530290
    [Google Scholar]
  50. Jara M.O. Warnken Z.N. Williams R.O. III Amorphous solid dispersions and the contribution of nanoparticles to in vitro dissolution and in vivo testing: Niclosamide as a case study. Pharmaceutics 2021 13 1 97 10.3390/pharmaceutics13010097 33466598
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018363757241216061705
Loading
/content/journals/cdd/10.2174/0115672018363757241216061705
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: soluplus ; Felodipine ; oral absorption ; nanoparticle ; pharmacokinetics ; amorphous dispersions
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test