Skip to content
2000
image of DSPE-mPEG2000-Modified Podophyllotoxin Long-Circulating Liposomes for Targeted Delivery: Their Preparation, Characterization, and Evaluation

Abstract

Objective

DSPE-mPEG2000 is a phospholipid and polyethylene glycol conjugate used in various biomedical applications, including drug delivery, gene transfection, and vaccine delivery. Due to the hydrophilic and hydrophobic properties of DSPE-mPEG2000, it can serve as a drug carrier, encapsulating drugs in liposomes to enhance stability and efficacy.

Method

In this study, long-circulating podophyllotoxin liposomes (Lc-PTOX-Lps) were prepared using DSPE-mPEG2000 as a modifying material and evaluated for their pharmacokinetics and anticancer activity.

Result

Lc-PTOX-Lps had an encapsulation rate of 87.11±1.77%, an average particle size of 168.91±7.07 nm, a polydispersity index (PDI) of 0.19±0.04, and a zeta potential of -24.37±0.36 mV. release studies showed that Lc-PTOX-Lps exhibited a significant slow-release effect. The long-circulating liposomes demonstrated better stability compared to normal liposomes and exhibited a significant slow-release profile. Pharmacokinetic studies indicated that Lc-PTOX-Lps had a prolonged half-life, reduced clearance, and improved bioavailability. Additionally, Lc-PTOX-Lps exhibited better anticancer effects on MCF-7 cells and lower toxicity to normal cells compared to PTOX.

Conclusion

Lc-PTOX-Lps were synthesized using a simple and effective method, and Lc-PTOX-Lps are promising anticancer agents.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018356666241224052638
2025-01-02
2025-01-22
Loading full text...

Full text loading...

References

  1. Shah Z. Gohar U.F. Jamshed I. Mushtaq A. Mukhtar H. Haq Z.U.M. Toma S.I. Manea R. Moga M. Popovici B. Podophyllotoxin: History, recent advances and future prospects. Biomolecules 2021 11 4 603 10.3390/biom11040603 33921719
    [Google Scholar]
  2. Gordaliza M. García P.A. Corral M.D.J.M. Castro M.A. Zurita G.M.A. Podophyllotoxin: Distribution, sources, applications and new cytotoxic derivatives. Toxicon 2004 44 4 441 459 10.1016/j.toxicon.2004.05.008 15302526
    [Google Scholar]
  3. Motyka S. Jafernik K. Ekiert H. Rad S.J. Calina D. Al-Omari B. Szopa A. Cho W.C. Podophyllotoxin and its derivatives: Potential anticancer agents of natural origin in cancer chemotherapy. Biomed. Pharmacother. 2023 158 114145 10.1016/j.biopha.2022.114145 36586242
    [Google Scholar]
  4. Cui Q. Du R. Liu M. Rong L. Lignans and their derivatives from plants as antivirals. Molecules 2020 25 1 183 10.3390/molecules25010183 31906391
    [Google Scholar]
  5. Shi R. Fan H. Yu X. Tang Y. Jiang J. Liang X. Advances of podophyllotoxin and its derivatives: Patterns and mechanisms. Biochem. Pharmacol. 2022 200 115039 10.1016/j.bcp.2022.115039 35436465
    [Google Scholar]
  6. Ardalani H. Avan A. Mobarhan G.M. Podophyllotoxin: A novel potential natural anticancer agent. Avicenna J. Phytomed. 2017 7 4 285 294 28884079
    [Google Scholar]
  7. Fan H. Zhu Z. Xian H. Wang H. Chen B. Tang Y.J. Tang Y. Liang X. Insight into the molecular mechanism of podophyllotoxin derivatives as anticancer drugs. Front. Cell Dev. Biol. 2021 9 709075 10.3389/fcell.2021.709075 34447752
    [Google Scholar]
  8. Yu X. Che Z. Xu H. Recent advances in the chemistry and biology of podophyllotoxins. Chemistry 2017 23 19 4467 4526 10.1002/chem.201602472 27726183
    [Google Scholar]
  9. Sun W. Sun F. Meng J. Cao X. Zhao S. Wang C. Li L. Jiang P. Design, semi-synthesis and bioactivity evaluation of novel podophyllotoxin derivatives as potent anti-tumor agents. Bioorg. Chem. 2022 126 105906 10.1016/j.bioorg.2022.105906 35661529
    [Google Scholar]
  10. Shen S. Tong Y. Luo Y. Huang L. Gao W. Biosynthesis, total synthesis, and pharmacological activities of aryltetralin-type lignan podophyllotoxin and its derivatives. Nat. Prod. Rep. 2022 39 9 1856 1875 10.1039/D2NP00028H 35913409
    [Google Scholar]
  11. Yin M. Fang Y. Sun X. Xue M. Zhang C. Zhu Z. Meng Y. Kong L. Myint Y.Y. Li Y. Zhao J. Yang X. Synthesis and anticancer activity of podophyllotoxin derivatives with nitrogen-containing heterocycles. Front Chem. 2023 11 1191498 10.3389/fchem.2023.1191498 37234201
    [Google Scholar]
  12. Yakkala P.A. Penumallu N.R. Shafi S. Kamal A. Prospects of topoisomerase inhibitors as promising anti-cancer agents. Pharmaceuticals 2023 16 10 1456 10.3390/ph16101456 37895927
    [Google Scholar]
  13. Abdelwahed W. Degobert G. Stainmesse S. Fessi H. Freeze-drying of nanoparticles: Formulation, process and storage considerations. Adv. Drug Deliv. Rev. 2006 58 15 1688 1713 10.1016/j.addr.2006.09.017 17118485
    [Google Scholar]
  14. Aljamal W. Kostarelos K. Construction of nanoscale multicompartment liposomes for combinatory drug delivery. Int. J. Pharm. 2007 331 2 182 185 10.1016/j.ijpharm.2006.11.020 17223294
    [Google Scholar]
  15. Guimarães D. Paulo C.A. Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. Int. J. Pharm. 2021 601 120571 10.1016/j.ijpharm.2021.120571 33812967
    [Google Scholar]
  16. Ling L. Yao C. Du Y. Ismail M. He R. Hou Y. Zhang Y. Li X. Assembled liposomes of dual podophyllotoxin phospholipid: Preparation, characterization and in vivo anticancer activity. Nanomedicine 2017 12 6 657 672 10.2217/nnm‑2016‑0396 28244817
    [Google Scholar]
  17. Zhao X. Qiu N. Ma Y. Liu J. An L. Zhang T. Li Z. Han X. Chen L. Preparation, characterization and biological evaluation of β-cyclodextrin-biotin conjugate based podophyllotoxin complex. Eur. J. Pharm. Sci. 2021 160 105745 10.1016/j.ejps.2021.105745 33549707
    [Google Scholar]
  18. Li M. Zhao Y. Sun J. Chen H. Liu Z. Lin K. Ma P. Zhang W. Zhen Y. Zhang S. Zhang S. pH/reduction dual-responsive hyaluronic acid-podophyllotoxin prodrug micelles for tumor targeted delivery. Carbohydr. Polym. 2022 288 119402 10.1016/j.carbpol.2022.119402 35450654
    [Google Scholar]
  19. Li Y. Xu P. He D. Xu B. Tu J. Shen Y. Long-circulating thermosensitive liposomes for the targeted drug delivery of oxaliplatin. Int. J. Nanomedicine 2020 15 6721 6734 10.2147/IJN.S250773 32982229
    [Google Scholar]
  20. Caddeo C. Pucci L. Gabriele M. Carbone C. Busquets F.X. Valenti D. Pons R. Vassallo A. Fadda A.M. Manconi M. Stability, biocompatibility and antioxidant activity of PEG-modified liposomes containing resveratrol. Int. J. Pharm. 2018 538 1-2 40 47 10.1016/j.ijpharm.2017.12.047 29294324
    [Google Scholar]
  21. Deodhar S. Dash A.K. Long circulating liposomes: Challenges and opportunities. Ther. Deliv. 2018 9 12 857 872 10.4155/tde‑2018‑0035 30444455
    [Google Scholar]
  22. Tiwari H. Rai N. Singh S. Gupta P. Verma A. Singh A.K. Kajal Salvi P. Singh S.K. Gautam V. Recent advances in nanomaterials-based targeted drug delivery for preclinical cancer diagnosis and therapeutics. Bioengineering 2023 10 7 760 10.3390/bioengineering10070760 37508788
    [Google Scholar]
  23. Tenchov R. Sasso J.M. Zhou Q.A. PEGylated lipid nanoparticle formulations: Immunological safety and efficiency perspective. Bioconjug. Chem. 2023 34 6 941 960 10.1021/acs.bioconjchem.3c00174 37162501
    [Google Scholar]
  24. Madkhali O.A. Perspectives and prospective on solid lipid nanoparticles as drug delivery systems. Molecules 2022 27 5 1543 10.3390/molecules27051543 35268643
    [Google Scholar]
  25. Drummond D.C. Noble C.O. Hayes M.E. Park J.W. Kirpotin D.B. Pharmacokinetics and in vivo drug release rates in liposomal nanocarrier development. J. Pharm. Sci. 2008 97 11 4696 4740 10.1002/jps.21358 18351638
    [Google Scholar]
  26. Arakachi O.K. Herculano M.J. Jurado R. Munive L.M. Lopez G.P. Pharmacokinetics and anti-tumor efficacy of pegylated liposomes co-loaded with cisplatin and mifepristone. Pharmaceuticals 2023 16 10 1337 10.3390/ph16101337 37895808
    [Google Scholar]
  27. Lawrie T.A. Rabbie R. Thoma C. Morrison J. Pegylated liposomal doxorubicin for first-line treatment of epithelial ovarian cancer. Cochrane Database Syst. Rev. 2013 2013 10 CD010482 10.1002/14651858.CD010482.pub2 24142521
    [Google Scholar]
  28. Mohamed N.A. Marei I. Crovella S. Saleh A.H. Recent developments in nanomaterials-based drug delivery and upgrading treatment of cardiovascular diseases. Int. J. Mol. Sci. 2022 23 3 1404 10.3390/ijms23031404 35163328
    [Google Scholar]
  29. Seo Y. Lim H. Park H. Yu J. An J. Yoo H.Y. Lee T. Recent progress of lipid nanoparticles-based lipophilic drug delivery: Focus on surface modifications. Pharmaceutics 2023 15 3 772 10.3390/pharmaceutics15030772 36986633
    [Google Scholar]
  30. Yin L. Pang Y. Shan L. Gu J. The in vivo pharmacokinetics of block copolymers containing polyethylene glycol used in nanocarrier drug delivery systems. Drug Metab. Dispos. 2022 50 6 827 836 10.1124/dmd.121.000568 35066464
    [Google Scholar]
  31. Sugarbaker P.H. Stuart O.A. Pharmacokinetics of the intraperitoneal nanoparticle pegylated liposomal doxorubicin in patients with peritoneal metastases. Eur. J. Surg. Oncol. 2021 47 1 108 114 10.1016/j.ejso.2019.03.035 30954354
    [Google Scholar]
  32. Moles E. Howard C.B. Huda P. Karsa M. McCalmont H. Kimpton K. Duly A. Chen Y. Huang Y. Tursky M.L. Ma D. Bustamante S. Pickford R. Connerty P. Omari S. Jolly C.J. Joshi S. Shen S. Pimanda J.E. Dolnikov A. Cheung L.C. Kotecha R.S. Norris M.D. Haber M. de Bock C.E. Somers K. Lock R.B. Thurecht K.J. Kavallaris M. Delivery of PEGylated liposomal doxorubicin by bispecific antibodies improves treatment in models of high-risk childhood leukemia. Sci. Transl. Med. 2023 15 696 eabm1262 10.1126/scitranslmed.abm1262 37196067
    [Google Scholar]
  33. Baki C. Bone marrow targeted liposomal drug delivery systems. Middle East Technical University 2011
    [Google Scholar]
  34. Shi F. Yin W. Frimpong A.M. Li X. Xia X. Sun W. Ji H. Toreniyazov E. Qilong W. Cao X. Yu J. Xu X. In-vitro and in-vivo evaluation and anti-colitis activity of esculetin-loaded nanostructured lipid carrier decorated with DSPE-MPEG2000. J. Microencapsul. 2023 40 6 442 455 10.1080/02652048.2023.2215345 37191893
    [Google Scholar]
  35. Chou T.H. Chu I.M. Thermodynamic characteristics of DSPC/DSPE-PEG2000 mixed monolayers on the water subphase at different temperatures. Colloids Surf. B Biointerfaces 2003 27 4 333 344 10.1016/S0927‑7765(02)00096‑6
    [Google Scholar]
  36. Zhang X.Y. Qiao H. Shi Y.B. HPLC method with fluorescence detection for the determination of ligustilide in rat plasma and its pharmacokinetics. Pharm. Biol. 2014 52 1 21 30 10.3109/13880209.2013.805790 24044763
    [Google Scholar]
  37. Desbène S. Renault G.S. Drugs that inhibit tubulin polymerization: The particular case of podophyllotoxin and analogues. Curr. Med. Chem. Anticancer Agents 2012 2 1 71 90 10.2174/1568011023354353 12678752
    [Google Scholar]
  38. Lee S.O. Joo S.H. Kwak A.W. Lee M.H. Seo J.H. Cho S.S. Yoon G. Chae J.I. Shim J.H. Podophyllotoxin induces ROS-mediated apoptosis and cell cycle arrest in human colorectal cancer cells via p38 MAPK signaling. Biomol. Ther. 2021 29 6 658 666 10.4062/biomolther.2021.143 34642263
    [Google Scholar]
  39. Akhtar M.J. Yar M.S. Khan A.A. Ali Z. Haider M.R. Recent advances in the synthesis and anticancer activity of some molecules other than nitrogen containing heterocyclic moeities. Mini Rev. Med. Chem. 2017 17 17 1602 1632 10.2174/1389557516666161031121639 27804888
    [Google Scholar]
  40. Shaker S. Gardouh A. Ghorab M. Factors affecting liposomes particle size prepared by ethanol injection method. Res. Pharm. Sci. 2017 12 5 346 352 10.4103/1735‑5362.213979 28974972
    [Google Scholar]
  41. Wang J. Suo X. Zhang H. P-glycoprotein antibody-conjugated paclitaxel liposomes targeted for multidrug-resistant lung cancer. Nanomedicine 2023 18 10 819 831 10.2217/nnm‑2023‑0015 37306214
    [Google Scholar]
  42. Shangguan Y. Ni J. Jiang L. Hu Y. He C. Ma Y. Wu G. Xiong H. Response surface methodology-optimized extraction of flavonoids from pomelo peels and isolation of naringin with antioxidant activities by Sephadex LH20 gel chromatography. Curr. Res. Food Sci. 2023 7 100610 10.1016/j.crfs.2023.100610 37860143
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018356666241224052638
Loading
/content/journals/cdd/10.2174/0115672018356666241224052638
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Podophyllotoxin ; Pharmacokinetics ; Cancer therapy ; liposomes ; DSPE-mPEG2000
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test