Skip to content
2000
image of Spray-Dried Inhalable Favipiravir Dry Powder Formulation for Influenza Therapy: Preparation and In vivo Evaluation

Abstract

Background

Influenza, a seasonal infectious disease, has consistently posed a formidable challenge to global health in recent years. Favipiravir, an RNA-dependent RNA polymerase inhibitor, serves as an anti-influenza medication, currently administered solely in oral form for clinical use. However, achieving an effective therapeutic outcome often necessitates high oral doses, which can be accompanied by adverse effects and suboptimal patient adherence.

Objective

To enhance favipiravir delivery efficiency and potentially mitigate dosage-related side effects, this study aimed to formulate favipiravir as a dry powder for pulmonary inhalation, facilitating direct targeting of lung tissue.

Methods

Employing L-leucine as a carrier, favipiravir was prepared as an inhalable dry powder through the spray-drying technique. A 3x3 full-factorial design approach was adopted to optimize the formulation. The optimized spray-dried powder underwent comprehensive characterization, including assessments of its morphology, crystallinity, flowability, and aerodynamic particle size distribution. The therapeutic efficacy of the powder was evaluated in a mouse model infected with the H1N1 influenza virus.

Results

The formulated powder demonstrated good aerosol properties, rendering it suitable for inhalation delivery. Its therapeutic efficacy was demonstrated in the mouse model, where it exhibited marked protective effects against the virus after 5 days of treatment. Notably, the inhalation dose required (15 mg/kg/day) was significantly lower than the oral gavage dose (150 mg/kg/day), indicating that substantially reduced doses, when administered inhalation, were sufficient to confer protection against mortality in mice.

Conclusion

The findings underscore the potential of inhalation therapy using spray-dried favipiravir powder as an effective and efficient treatment option for influenza, offering the promise of reduced dosing requirements and associated adverse effects.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018351326250306040551
2025-03-12
2025-05-02
Loading full text...

Full text loading...

References

  1. Kumari R. Sharma S.D. Kumar A. Ende Z. Mishina M. Wang Y. Falls Z. Samudrala R. Pohl J. Knight P.R. Sambhara S. Antiviral approaches against influenza virus. Clin. Microbiol. Rev. 2023 36 1 e00040-22 10.1128/cmr.00040‑22 36645300
    [Google Scholar]
  2. Bouvier N.M. Palese P. The biology of influenza viruses. Vaccine 2008 26 Suppl 4 Suppl. 4 D49 D53 10.1016/j.vaccine.2008.07.039 19230160
    [Google Scholar]
  3. Taubenberger J.K. Kash J.C. Morens D.M. The 1918 influenza pandemic: 100 years of questions answered and unanswered. Sci. Transl. Med. 2019 11 502 eaau5485 10.1126/scitranslmed.aau5485 31341062
    [Google Scholar]
  4. Influenza 2024 Available from: https://www.who.int/teams/health-product-policy-and-standards/standards-and-specifications/vaccines-quality/influenza
  5. Estimate of influenza deaths due to respiratory disease. 2024 Available from: https://www.who.int/teams/global-influenza-programme/surveillance-and-monitoring/burden-of-disease
  6. Seasonal Influenza. 2024 Available from: https://www.who.int/health-topics/influenza-seasonal#tab=tab_1
  7. Marbus S.D. Schweitzer V.A. Groeneveld G.H. Oosterheert J.J. Schneeberger P.M. van der Hoek W. van Dissel J.T. van Gageldonk-Lafeber A.B. Mangen M.J. Incidence and costs of hospitalized adult influenza patients in The Netherlands: A retrospective observational study. Eur. J. Health Econ. 2020 21 5 775 785 10.1007/s10198‑020‑01172‑1 32180069
    [Google Scholar]
  8. Putri W.C.W.S. Muscatello D.J. Stockwell M.S. Newall A.T. Economic burden of seasonal influenza in the United States. Vaccine 2018 36 27 3960 3966 10.1016/j.vaccine.2018.05.057 29801998
    [Google Scholar]
  9. Cowling B.J. Ip D.K.M. Fang V.J. Suntarattiwong P. Olsen S.J. Levy J. Uyeki T.M. Leung G.M. Malik Peiris J.S. Chotpitayasunondh T. Nishiura H. Mark Simmerman J. Aerosol transmission is an important mode of influenza A virus spread. Nat. Commun. 2013 4 1 1935 10.1038/ncomms2922 23736803
    [Google Scholar]
  10. Killingley B. Nguyen-Van-Tam J. Routes of influenza transmission. Influenza Other Respir. Viruses 2013 7 s2 Suppl. 2 42 51 10.1111/irv.12080 24034483
    [Google Scholar]
  11. Kormuth K.A. Lin K. Prussin A.J. II Vejerano E.P. Tiwari A.J. Cox S.S. Myerburg M.M. Lakdawala S.S. Marr L.C. Influenza virus infectivity is retained in aerosols and droplets independent of relative humidity. J. Infect. Dis. 2018 218 5 739 747 10.1093/infdis/jiy221 29878137
    [Google Scholar]
  12. Nainwal N. Treatment of respiratory viral infections through inhalation therapeutics: Challenges and opportunities. Pulm. Pharmacol. Ther. 2022 77 102170 10.1016/j.pupt.2022.102170 36240985
    [Google Scholar]
  13. Sahin G. Akbal-Dagistan O. Culha M. Erturk A. Basarir N.S. Sancar S. Yildiz-Pekoz A. Antivirals and the potential benefits of orally inhaled drug administration in COVID-19 treatment. J. Pharm. Sci. 2022 111 10 2652 2661 10.1016/j.xphs.2022.06.004 35691607
    [Google Scholar]
  14. Griffin A.D. Perry A.S. Fleming D.M. Cost-effectiveness analysis of inhaled zanamivir in the treatment of influenza A and B in high-risk patients. PharmacoEconomics 2001 19 3 293 301 10.2165/00019053‑200119030‑00007 11303417
    [Google Scholar]
  15. Chandel A. Goyal A.K. Ghosh G. Rath G. Recent advances in aerosolised drug delivery. Biomed. Pharmacother. 2019 112 108601 10.1016/j.biopha.2019.108601 30780107
    [Google Scholar]
  16. Rubin B.K. Williams R.W. Emerging aerosol drug delivery strategies: From bench to clinic. Adv. Drug Deliv. Rev. 2014 75 141 148 10.1016/j.addr.2014.06.008 24993613
    [Google Scholar]
  17. Wong J.P. Christopher M.E. Viswanathan S. Schnell G. Dai X. Van Loon D. Stephen E.R. Aerosol and nasal delivery of vaccines and antiviral drugs against seasonal and pandemic influenza. Expert Rev. Respir. Med. 2010 4 2 171 177 10.1586/ers.10.15 20406083
    [Google Scholar]
  18. Tulbah A.S. Lee W.H. Physicochemical characteristics and in vitro Toxicity/Anti-SARS-CoV-2 activity of favipiravir solid lipid nanoparticles (SLNs). Pharmaceuticals 2021 14 10 1059 10.3390/ph14101059 34681283
    [Google Scholar]
  19. Heida R. Frijlink H.W. Hinrichs W.L.J. Inhalation of vaccines and antiviral drugs to fight respiratory virus infections: Reasons to prioritize the pulmonary route of administration. MBio 2023 14 5 e01295-23 10.1128/mbio.01295‑23 37768057
    [Google Scholar]
  20. Parvathaneni V. Kulkarni N.S. Muth A. Kunda N.K. Gupta V. Therapeutic potential of inhalable medications to combat coronavirus disease-2019. Ther. Deliv. 2021 12 2 105 110 10.4155/tde‑2020‑0092 33198605
    [Google Scholar]
  21. Alshammari M.K. Almutairi M.S. Althobaiti M.D. Alsawyan W.A. Alomair S.A. Alwattban R.R. Al Khozam Z.H. Alanazi T.J. Alhuqyal A.S. Darwish H.S.A. Alotaibi A.F. Almutairi F.N. Alanazi A.A. A systematic review of clinical pharmacokinetics of inhaled antiviral. Medicina 2023 59 4 642 10.3390/medicina59040642 37109600
    [Google Scholar]
  22. Shelton M.J. Lovern M. Ng-Cashin J. Jones L. Gould E. Gauvin J. Rodvold K.A. Zanamivir pharmacokinetics and pulmonary penetration into epithelial lining fluid following intravenous or oral inhaled administration to healthy adult subjects. Antimicrob. Agents Chemother. 2011 55 11 5178 5184 10.1128/AAC.00703‑11 21896909
    [Google Scholar]
  23. Driouich J.S. Cochin M. Lingas G. Moureau G. Touret F. Petit P.R. Piorkowski G. Barthélémy K. Laprie C. Coutard B. Guedj J. de Lamballerie X. Solas C. Nougairède A. Favipiravir antiviral efficacy against SARS-CoV-2 in a hamster model. Nat. Commun. 2021 12 1 1735 10.1038/s41467‑021‑21992‑w 33741945
    [Google Scholar]
  24. Furuta Y. Gowen B.B. Takahashi K. Shiraki K. Smee D.F. Barnard D.L. Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antiviral Res. 2013 100 2 446 454 10.1016/j.antiviral.2013.09.015 24084488
    [Google Scholar]
  25. Shiraki K. Daikoku T. Favipiravir, an anti-influenza drug against life-threatening RNA virus infections. Pharmacol. Ther. 2020 209 107512 10.1016/j.pharmthera.2020.107512 32097670
    [Google Scholar]
  26. Delang L. Abdelnabi R. Neyts J. Favipiravir as a potential countermeasure against neglected and emerging RNA viruses. Antiviral Res. 2018 153 85 94 10.1016/j.antiviral.2018.03.003 29524445
    [Google Scholar]
  27. Furuta Y. Komeno T. Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. 2017 93 7 449 463 10.2183/pjab.93.027 28769016
    [Google Scholar]
  28. Pilkington V. Pepperrell T. Hill A. A review of the safety of favipiravir – A potential treatment in the COVID-19 pandemic? J. Virus Erad. 2020 6 2 45 51 10.1016/S2055‑6640(20)30016‑9 32405421
    [Google Scholar]
  29. Hung D.T. Ghula S. Aziz J.M.A. Makram A.M. Tawfik G.M. Abozaid A.A.F. Pancharatnam R.A. Ibrahim A.M. Shabouk M.B. Turnage M. Nakhare S. Karmally Z. Kouz B. Le T.N. Alhijazeen S. Phuong N.Q. Ads A.M. Abdelaal A.H. Nam N.H. Iiyama T. Kita K. Hirayama K. Huy N.T. The efficacy and adverse effects of favipiravir on patients with COVID-19: A systematic review and meta-analysis of published clinical trials and observational studies. Int. J. Infect. Dis. 2022 120 217 227 10.1016/j.ijid.2022.04.035 35470021
    [Google Scholar]
  30. Yamazaki S. Suzuki T. Sayama M. Nakada T. Igari H. Ishii I. Suspected cholestatic liver injury induced by favipiravir in a patient with COVID-19. J. Infect. Chemother. 2021 27 2 390 392 10.1016/j.jiac.2020.12.021 33402301
    [Google Scholar]
  31. Moshikur R.M. Ali M.K. Wakabayashi R. Moniruzzaman M. Goto M. Favipiravir-based ionic liquids as potent antiviral drugs for oral delivery: Synthesis, solubility, and pharmacokinetic evaluation. Mol. Pharm. 2021 18 8 3108 3115 10.1021/acs.molpharmaceut.1c00324 34250805
    [Google Scholar]
  32. Akbal-Dagistan O. Sevim M. Sen L.S. Basarir N.S. Culha M. Erturk A. Fael H. Kaptan E. Sancar S. Mulazimoglu Durmusoglu L. Yegen B.C. Yildiz-Pekoz A. Pulmonary delivery of favipiravir in rats reaches high local concentrations without causing oxidative lung injury or systemic side effects. Pharmaceutics 2022 14 11 2375 10.3390/pharmaceutics14112375 36365193
    [Google Scholar]
  33. Sou T. Bergström C.A.S. Contemporary formulation development for inhaled pharmaceuticals. J. Pharm. Sci. 2021 110 1 66 86 10.1016/j.xphs.2020.09.006 32916138
    [Google Scholar]
  34. Brunaugh A.D. Smyth H.D.C. Formulation techniques for high dose dry powders. Int. J. Pharm. 2018 547 1-2 489 498 10.1016/j.ijpharm.2018.05.036 29778822
    [Google Scholar]
  35. Chaurasiya B. Zhao Y.Y. Dry powder for pulmonary delivery: A comprehensive review. Pharmaceutics 2020 13 1 31 10.3390/pharmaceutics13010031 33379136
    [Google Scholar]
  36. Chang R.Y.K. Chow M.Y.T. Khanal D. Chen D. Chan H.K. Dry powder pharmaceutical biologics for inhalation therapy. Adv. Drug Deliv. Rev. 2021 172 64 79 10.1016/j.addr.2021.02.017 33705876
    [Google Scholar]
  37. Negi A. Nimbkar S. Moses J.A. Engineering inhalable therapeutic particles: Conventional and emerging approaches. Pharmaceutics 2023 15 12 2706 10.3390/pharmaceutics15122706 38140047
    [Google Scholar]
  38. Baumann J.M. Adam M.S. Wood J.D. Engineering advances in spray drying for pharmaceuticals. Annu. Rev. Chem. Biomol. Eng. 2021 12 1 217 240 10.1146/annurev‑chembioeng‑091720‑034106 33781083
    [Google Scholar]
  39. Vehring R. Pharmaceutical particle engineering via spray drying. Pharm. Res. 2008 25 5 999 1022 10.1007/s11095‑007‑9475‑1 18040761
    [Google Scholar]
  40. Yousry C. Goyal M. Gupta V. Excipients for novel inhaled dosage forms: An overview. AAPS PharmSciTech 2024 25 2 36 10.1208/s12249‑024‑02741‑w 38356031
    [Google Scholar]
  41. Pilcer G. Amighi K. Formulation strategy and use of excipients in pulmonary drug delivery. Int. J. Pharm. 2010 392 1-2 1 19 10.1016/j.ijpharm.2010.03.017 20223286
    [Google Scholar]
  42. Zillen D. Beugeling M. Hinrichs W.L.J. Frijlink H.W. Grasmeijer F. Natural and bioinspired excipients for dry powder inhalation formulations. Curr. Opin. Colloid Interface Sci. 2021 56 101497 10.1016/j.cocis.2021.101497
    [Google Scholar]
  43. Li L. Sun S. Parumasivam T. Denman J.A. Gengenbach T. Tang P. Mao S. Chan H.K. l -Leucine as an excipient against moisture on in vitro aerosolization performances of highly hygroscopic spray-dried powders. Eur. J. Pharm. Biopharm. 2016 102 132 141 10.1016/j.ejpb.2016.02.010 26970252
    [Google Scholar]
  44. Yu J. Chan H.K. Gengenbach T. Denman J.A. Protection of hydrophobic amino acids against moisture-induced deterioration in the aerosolization performance of highly hygroscopic spray-dried powders. Eur. J. Pharm. Biopharm. 2017 119 224 234 10.1016/j.ejpb.2017.06.023 28655664
    [Google Scholar]
  45. Wong S.N. Weng J. Ip I. Chen R. Lakerveld R. Telford R. Blagden N. Scowen I.J. Chow S.F. Rational development of a carrier-free dry powder inhalation formulation for respiratory viral infections via quality by design: A drug-drug cocrystal of favipiravir and theophylline. Pharmaceutics 2022 14 2 300 10.3390/pharmaceutics14020300 35214034
    [Google Scholar]
  46. Al Bujuq N. Methods of synthesis of Remdesivir, Favipiravir, Hydroxychloroquine, and Chloroquine: Four small molecules repurposed for clinical trials during the Covid-19 pandemic. Synthesis 2020 52 24 3735 3750 10.1055/s‑0040‑1707386
    [Google Scholar]
  47. Zhu M. Zhang D. Zhang L. Zhao L. Xu L. Wang B. Zhang X. Chen J. Bei Z. Wang H. Zhou D. Yang W. Song Y. Spray-dried inhalable powder formulations of gentamicin designed for pneumonic plague therapy in a mouse model. Pharmaceutics 2022 14 12 2646 10.3390/pharmaceutics14122646 36559140
    [Google Scholar]
  48. Moon C. Sahakijpijarn S. Koleng J.J. Williams R.O. III Processing design space is critical for voriconazole nanoaggregates for dry powder inhalation produced by thin film freezing. J. Drug Deliv. Sci. Technol. 2019 54 101295 10.1016/j.jddst.2019.101295
    [Google Scholar]
  49. Zhang W. Song X. Zhai L. Guo J. Zheng X. Zhang L. Lv M. Hu L. Zhou D. Xiong X. Yang W. Complete protection against Yersinia pestis in BALB/c mouse model elicited by immunization with inhalable formulations of rF1-V10 fusion protein via Aerosolized Intratracheal Inoculation. Front. Immunol. 2022 13 793382 10.3389/fimmu.2022.793382 35154110
    [Google Scholar]
  50. Arora S. Haghi M. Loo C.Y. Traini D. Young P.M. Jain S. Development of an inhaled controlled release voriconazole dry powder formulation for the treatment of respiratory fungal infection. Mol. Pharm. 2015 12 6 2001 2009 10.1021/mp500808t 25923171
    [Google Scholar]
  51. Shetty N. Park H. Zemlyanov D. Mangal S. Bhujbal S. Zhou Q.T. Influence of excipients on physical and aerosolization stability of spray dried high-dose powder formulations for inhalation. Int. J. Pharm. 2018 544 1 222 234 10.1016/j.ijpharm.2018.04.034 29678544
    [Google Scholar]
  52. Young P. Edge S. Traini D. Jones M. Price R. Elsabawi D. Urry C. Smith C. The influence of dose on the performance of dry powder inhalation systems. Int. J. Pharm. 2005 296 1-2 26 33 10.1016/j.ijpharm.2005.02.004 15885452
    [Google Scholar]
  53. Nemati E. Mokhtarzadeh A. Panahi-Azar V. Mohammadi A. Hamishehkar H. Mesgari-Abbasi M. Ezzati Nazhad Dolatabadi J. de la Guardia M. Ethambutol-loaded solid lipid nanoparticles as dry powder inhalable formulation for tuberculosis therapy. AAPS PharmSciTech 2019 20 3 120 10.1208/s12249‑019‑1334‑y 30796625
    [Google Scholar]
  54. Ezzati Nazhad Dolatabadi J. Hamishehkar H. Valizadeh H. Development of dry powder inhaler formulation loaded with alendronate solid lipid nanoparticles: Solid-state characterization and aerosol dispersion performance. Drug Dev. Ind. Pharm. 2015 41 9 1431 1437 10.3109/03639045.2014.956111 25220930
    [Google Scholar]
  55. Pharmacopoeia of the People’s Republic of China. National Pharmacopoeia Commission 2020 Part 4 485 486
    [Google Scholar]
  56. Seow H.C. Liao Q. Lau A.T.Y. Leung S.W.S. Yuan S. Lam J.K.W. Dual targeting powder formulation of antiviral agent for customizable nasal and lung deposition profile through single intranasal administration. Int. J. Pharm. 2022 619 121704 10.1016/j.ijpharm.2022.121704 35358643
    [Google Scholar]
  57. Bakhtiary Z. Barar J. Aghanejad A. Saei A.A. Nemati E. Ezzati Nazhad Dolatabadi J. Omidi Y. Microparticles containing erlotinib-loaded solid lipid nanoparticles for treatment of non-small cell lung cancer. Drug Dev. Ind. Pharm. 2017 43 8 1244 1253 10.1080/03639045.2017.1310223 28323493
    [Google Scholar]
  58. Gowda D. Ohno M. B Gowda S.G. Chiba H. Shingai M. Kida H. Hui S.P. Defining the kinetic effects of infection with influenza virus A/PR8/34 (H1N1) on sphingosine-1-phosphate signaling in mice by targeted LC/MS. Sci. Rep. 2021 11 1 20161 10.1038/s41598‑021‑99765‑0 34635791
    [Google Scholar]
  59. Zhou Q. Loh Z.H. Yu J. Sun S. Gengenbach T. Denman J.A. Li J. Chan H.K. How much surface coating of hydrophobic azithromycin is sufficient to prevent moisture-Induced decrease in aerosolisation of hygroscopic amorphous colistin powder? AAPS J. 2016 18 5 1213 1224 10.1208/s12248‑016‑9934‑x 27255350
    [Google Scholar]
  60. Mohan M. Lee S. Guo C. Peri S.P. Doub W.H. Evaluation of abbreviated impactor measurements (AIM) and efficient data analysis (EDA) for dry powder inhalers (DPIs) against the full-resolution next generation impactor (NGI). AAPS PharmSciTech 2017 18 5 1585 1594 10.1208/s12249‑016‑0625‑9 27624069
    [Google Scholar]
  61. Fukao K. Noshi T. Yamamoto A. Kitano M. Ando Y. Noda T. Baba K. Matsumoto K. Higuchi N. Ikeda M. Shishido T. Naito A. Combination treatment with the cap-dependent endonuclease inhibitor baloxavir marboxil and a neuraminidase inhibitor in a mouse model of influenza A virus infection. J. Antimicrob. Chemother. 2019 74 3 654 662 10.1093/jac/dky462 30476172
    [Google Scholar]
  62. Yoo J.K. Kim T.S. Hufford M.M. Braciale T.J. Viral infection of the lung: Host response and sequelae. J. Allergy Clin. Immunol. 2013 132 6 1263 1276 10.1016/j.jaci.2013.06.006 23915713
    [Google Scholar]
  63. Fiore A.E. Fry A. Shay D. Gubareva L. Bresee J.S. Uyeki T.M. Antiviral agents for the treatment and chemoprophylaxis of influenza --- Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm. Rep. 2011 60 1 1 24 21248682
    [Google Scholar]
  64. Yildiz Pekoz A. Akbal Dagistan O. Fael H. Culha M. Erturk A. Basarir N.S. Sahin G. Serhatli M. Cakirca G. Tekin S. Sen L.S. Sevim M. Mulazimoglu Durmusoglu L. Yegen B.C. Pulmonary delivery of favipiravir inhalation solution for COVID-19 treatment: In vitro characterization, stability, in vitro cytotoxicity, and antiviral activity using real time cell analysis. Drug Deliv. 2022 29 1 2846 2854 10.1080/10717544.2022.2118398 36062490
    [Google Scholar]
  65. Kumbhar P. Kaur J. De Rubis G. Paudel K.R. Prasher P. Patel V.K. Corrie L. Chellappan D.K. Gupta G. Singh S.K. Patravale V. Disouza J. Dua K. Inhalation drug delivery in combating pulmonary infections: Advances and challenges. J. Drug Deliv. Sci. Technol. 2023 89 105022 10.1016/j.jddst.2023.105022
    [Google Scholar]
  66. Wang B. Wang L. Yang Q. Zhang Y. Qinglai T. Yang X. Xiao Z. Lei L. Li S. Pulmonary inhalation for disease treatment: Basic research and clinical translations. Mater. Today Bio 2024 25 100966 10.1016/j.mtbio.2024.100966 38318475
    [Google Scholar]
  67. Patton J.S. Byron P.R. Inhaling medicines: Delivering drugs to the body through the lungs. Nat. Rev. Drug Discov. 2007 6 1 67 74 10.1038/nrd2153 17195033
    [Google Scholar]
  68. Munir M. Jena L. Kett V.L. Dunne N.J. McCarthy H.O. Spray drying: Inhalable powders for pulmonary gene therapy. Biomater. Adv. 2022 133 112601 10.1016/j.msec.2021.112601 35527158
    [Google Scholar]
  69. Alhajj N. O’Reilly N.J. Cathcart H. Leucine as an excipient in spray dried powder for inhalation. Drug Discov. Today 2021 26 10 2384 2396 10.1016/j.drudis.2021.04.009 33872799
    [Google Scholar]
  70. Lechanteur A. Evrard B. Influence of composition and spray-drying process parameters on carrier-free DPI properties and behaviors in the Lung: A review. Pharmaceutics 2020 12 1 55 10.3390/pharmaceutics12010055 31936628
    [Google Scholar]
  71. Alhajj N. O’Reilly N.J. Cathcart H. Designing enhanced spray dried particles for inhalation: A review of the impact of excipients and processing parameters on particle properties. Powder Technol. 2021 384 313 331 10.1016/j.powtec.2021.02.031
    [Google Scholar]
  72. Seville P.C. Li H. Learoyd T.P. Spray-dried powders for pulmonary drug delivery. Crit. Rev. Ther. Drug Carrier Syst. 2007 24 4 307 360 10.1615/CritRevTherDrugCarrierSyst.v24.i4.10 18197788
    [Google Scholar]
  73. Hassan M.S. Lau R.W.M. Effect of particle shape on dry particle inhalation: Study of flowability, aerosolization, and deposition properties. AAPS PharmSciTech 2009 10 4 1252 1262 10.1208/s12249‑009‑9313‑3 19866362
    [Google Scholar]
  74. Scherließ R. Bock S. Bungert N. Neustock A. Valentin L. Particle engineering in dry powders for inhalation. Eur. J. Pharm. Sci. 2022 172 106158 10.1016/j.ejps.2022.106158 35248734
    [Google Scholar]
  75. Gan C. Luo W. Yu Y. Jiao Z. Li S. Su D. Feng J. Zhao X. Qiu Y. Hu L. Zhou D. Xiong X. Wang J. Yang H. Intratracheal inoculation of AHc vaccine induces protection against aerosolized botulinum neurotoxin A challenge in mice. NPJ Vaccines 2021 6 1 87 10.1038/s41541‑021‑00349‑w 34158496
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018351326250306040551
Loading
/content/journals/cdd/10.2174/0115672018351326250306040551
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: inhalation ; spray-drying ; influenza ; evaluation ; formulation ; Pulmonary drug delivery
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test