Skip to content
2000
image of A Nanocarrier Enhances the Anti-Liver Cancer Efficacy of Mitoxantrone: An Acidic Panax notoginseng Polysaccharide III

Abstract

Introduction

The incidence and mortality rates of liver cancer are high; therefore, developing new drug delivery systems with good biocompatibility and targeting has become a research hotspot.

Methods

Mitoxantrone hydrochloride (MH) loaded in acidic polysaccharide III nanoparticles (MANPs) was prepared using electrostatic adsorption. This was achieved by loading MH in acidic polysaccharide III (APPN III), a natural compound that exhibits anti-tumor activity. Response surface methodology was used to determine the parameters for the best formulation.

Results

Fourier-transform infrared spectroscopy and differential scanning calorimetry indicated that MH in MANPs was amorphous and exhibited good encapsulation efficiency in the carrier. Findings from dynamic dialysis confirmed that MANPs exhibited slow drug release at pH 6.8 and over the pH range of 7.2-7.4. experiments confirmed the anti-tumor effects of MANPs on H22 cells based on the inhibition of cell proliferation and an increase in apoptosis. MANPs also demonstrated an obvious anti-tumor effect without any toxicity in H22 tumor-bearing mice. This effect could be attributed to APPN III enhancing the immune system and exerting a synergistic anti-tumor effect in combination with MH, thereby alleviating MH-induced damage to the immune system in H22 tumor-bearing mice.

Conclusion

As a nano-carrier prepared using natural resources, APPN III shows immense potential in the field of drug delivery and could serve as a novel option for the effective delivery of chemotherapeutic drugs.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018351085250212080829
2025-02-18
2025-05-04
Loading full text...

Full text loading...

References

  1. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  2. Anwanwan D. Singh S.K. Singh S. Saikam V. Singh R. Challenges in liver cancer and possible treatment approaches. Biochim. Biophys. Acta Rev. Cancer 2020 1873 1 188314 10.1016/j.bbcan.2019.188314 31682895
    [Google Scholar]
  3. Orcutt S. T. Anaya D. A. Liver resection and surgical strategies for management of primary liver cancer. Cancer Control: J. Moffitt Cancer Center 2018 25 1 1073274817744621
    [Google Scholar]
  4. Melehy A. Agopian V. Treating rare tumors with liver transplantation. Curr. Opin. Organ Transplant. 2024 29 1 30 36 10.1097/MOT.0000000000001118 37851086
    [Google Scholar]
  5. Kairaluoma V. Karjalainen M. Pohjanen V.M. Saarnio J. Niemelä J. Huhta H. Helminen O. Treatment trends and outcomes of hepatocellular carcinoma in a single center for 35 years. Minerva Surg. 2021 76 3 252 263 10.23736/S2724‑5691.21.08426‑1 33890436
    [Google Scholar]
  6. Xie F. Ge J. Sheng W. Wang D. Liao W. Li E. Wu L. Lei J. Based on the IWATE criteria: To investigate the influence of different surgical approaches on the perioperative outcomes of hepatectomy. Surg. Endosc. 2023 37 2 1044 1052 10.1007/s00464‑022‑09563‑6 36109356
    [Google Scholar]
  7. Ziogas I.A. Gleisner A.L. Resection versus transplant for hepatocellular carcinoma. Surg. Clin. North Am. 2024 104 1 113 127 10.1016/j.suc.2023.08.005 37953031
    [Google Scholar]
  8. Chen W. Chiang C.L. Dawson L.A. Efficacy and safety of radiotherapy for primary liver cancer. Chin. Clin. Oncol. 2021 10 1 9 10.21037/cco‑20‑89 32576017
    [Google Scholar]
  9. Abolzadeh V. Imanparast A. Nassirli H. Tayebi Meybodi N. Khalili Najafabad B. Sazgarnia A. In vivo evaluation of Sono-chemo therapy via hollow gold nanoshells conjugated to mitoxantrone on breast cancer. Iran. J. Basic Med. Sci. 2023 26 3 285 294 36865038
    [Google Scholar]
  10. Rezaeivala Z. Imanparast A. Mohammadi Z. Najafabad B.K. Sazgarnia A. The multimodal effect of Photothermal/Photodynamic/Chemo therapies mediated by Au-CoFe2O4 @Spiky nanostructure adjacent to mitoxantrone on breast cancer cells. Photodiagn. Photodyn. Ther. 2023 41 103269 10.1016/j.pdpdt.2022.103269 36596330
    [Google Scholar]
  11. Granja A. Lima-Sousa R. Alves C.G. de Melo-Diogo D. Nunes C. Sousa C.T. Correia I.J. Reis S. Multifunctional targeted solid lipid nanoparticles for combined photothermal therapy and chemotherapy of breast cancer. Biomater. Adv. 2023 151 213443 10.1016/j.bioadv.2023.213443 37146526
    [Google Scholar]
  12. Tong C. Wang W. He C. m1A methylation modification patterns and metabolic characteristics in hepatocellular carcinoma. BMC Gastroenterol. 2022 22 1 93 10.1186/s12876‑022‑02160‑w 35240991
    [Google Scholar]
  13. Xie B. He X. Guo G. Zhang X. Li J. Liu J. Lin Y. High-throughput screening identified mitoxantrone to induce death of hepatocellular carcinoma cells with autophagy involvement. Biochem. Biophys. Res. Commun. 2020 521 1 232 237 10.1016/j.bbrc.2019.10.114 31653348
    [Google Scholar]
  14. Song G. Gu J. Chen Y. Zhang Y. Huang X. Lou S. Deng J. The applications of mitoxantrone and its liposome in adult acute myeloid leukemia. Open J. Blood Dis. 2023 13 1 51 58 10.4236/ojbd.2023.131007
    [Google Scholar]
  15. Bhatnagar B. Zhao Q. Mims A.S. Vasu S. Behbehani G.K. Larkin K. Blachly J.S. Badawi M.A. Hill K.L. Dzwigalski K.R. Phelps M.A. Blum W. Klisovic R.B. Ruppert A.S. Ranganathan P. Walker A.R. Garzon R. Phase 1 study of selinexor in combination with salvage chemotherapy in Adults with relapsed or refractory Acute myeloid leukemia. Leuk. Lymphoma 2023 64 13 2091 2100 10.1080/10428194.2023.2253480 37665178
    [Google Scholar]
  16. Singh A. Bora S. Khurana S. Kumar P. Sarkar N. Kukreti R. Kukreti S. Kaushik M. Advance nanotherapeutic approach for systemic co-delivery of mitoxantrone loaded chitosan coated PLGA nanoparticles to improve the chemotherapy against human non-small cell lung cancer. J. Drug Deliv. Sci. Technol. 2023 84 104523 10.1016/j.jddst.2023.104523
    [Google Scholar]
  17. Zhao J. Guercio B.J. Sahasrabudhe D. Current trends in chemotherapy in the treatment of metastatic prostate cancer. Cancers 2023 15 15 3969 10.3390/cancers15153969 37568784
    [Google Scholar]
  18. Yang H. Wang X. Zhang H. Peng J. Li W. Liu Y. Hu J. Zhou H. Zhang B. Liu J. Lin S. Luo H. Hu J. Li Z. Mitoxantrone hydrochloride liposome injection in the treatment of recurrent/metastatic head and neck cancers: A multicenter, open-label, single-arm, phase Ⅰb study. J. Clin. Oncol. 2022 40 16_suppl e18028 e18028 10.1200/JCO.2022.40.16_suppl.e18028
    [Google Scholar]
  19. Huang Y. Li R. Guiling L. Luo Y. Yang Z. Lou G. Ouyang W. Xie R. Luo W. Chen L. Zhou Q. Safety and efficacy of mitoxantrone hydrochloride liposome in patients with platinum-refractory or platinum-resistant ovarian cancer: A prospective, multicenter, open-label, single-arm, phase Ib clinical trial. J. Clin. Oncol. 2022 40 16_suppl 5550 10.1200/JCO.2022.40.16_suppl.5550
    [Google Scholar]
  20. Ortiz-Rivero S. Peleteiro-Vigil A. Abete L. Lozano E. Hammer H.S. Giacomo S.D. Abad M. Boix L. Forner A. Reig M. Macias R.I.R. Pötz O. Marin J.J.G. Briz O. Sensitization of cholangiocarcinoma cells to chemotherapy through BCRP inhibition with β-caryophyllene oxide. Biomed. Pharmacother. 2024 170 116038 10.1016/j.biopha.2023.116038 38141281
    [Google Scholar]
  21. Minko I.G. Moellmer S.A. Luzadder M.M. Tomar R. Stone M.P. McCullough A.K. Stephen Lloyd R. Interaction of mitoxantrone with abasic sites - DNA strand cleavage and inhibition of apurinic/apyrimidinic endonuclease 1, APE1. DNA Repair 2024 133 103606 103606 10.1016/j.dnarep.2023.103606 38039951
    [Google Scholar]
  22. Wang R. Li N. Zhang T. Sun Y. He X. Lu X. Chu L. Sun K. Tumor microenvironment-responsive micelles assembled from a prodrug of mitoxantrone and 1-methyl tryptophan for enhanced chemo-immunotherapy. Drug Deliv. 2023 30 1 2182254 10.1080/10717544.2023.2182254 36840464
    [Google Scholar]
  23. Shao L. Ye Q. Jia M. Abdulhay E. miR-130-3p promotes MTX-induced immune killing of hepatocellular carcinoma cells by targeting EPHB4. J. Healthc. Eng. 2021 2021 1 1 9 10.1155/2021/4650794 34336153
    [Google Scholar]
  24. Nduwumwami A.J. Hengst J.A. Yun J.K. Sphingosine kinase inhibition enhances dimerization of calreticulin at the cell surface in mitoxantrone-induced immunogenic cell death. J. Pharmacol. Exp. Ther. 2021 378 3 300 310 10.1124/jpet.121.000629 34158403
    [Google Scholar]
  25. Mei K.C. Liao Y.P. Jiang J. Chiang M. Khazaieli M. Liu X. Wang X. Liu Q. Chang C.H. Zhang X. Li J. Ji Y. Melano B. Telesca D. Xia T. Meng H. Nel A.E. Liposomal delivery of mitoxantrone and a cholesteryl indoximod prodrug provides effective chemo-immunotherapy in multiple solid tumors. ACS Nano 2020 14 10 13343 13366 10.1021/acsnano.0c05194 32940463
    [Google Scholar]
  26. Reis-Mendes A. Carvalho F. Remião F. Sousa E. de Lourdes Bastos M. Costa V.M. Autophagy (but not metabolism) is a key event in mitoxantrone-induced cytotoxicity in differentiated AC16 cardiac cells. Arch. Toxicol. 2023 97 1 201 216 10.1007/s00204‑022‑03363‑6 36216988
    [Google Scholar]
  27. Kouwenberg T.W. van Dalen E.C. Feijen E.A.M. Netea S.A. Bolier M. Slieker M.G. Hoesein F.A.A.M. Kremer L.C.M. Grotenhuis H.B. Mavinkurve-Groothuis A.M.C. Acute and early-onset cardiotoxicity in children and adolescents with cancer: A systematic review. BMC Cancer 2023 23 1 866 10.1186/s12885‑023‑11353‑9 37710224
    [Google Scholar]
  28. Yokoyama M. Okano T. Targeting of anti-cancer drugs with nano-sized carrier system. Jpn. J. Clin. Med. 1998 56 12 3227 3234 9883646
    [Google Scholar]
  29. Islam R. Maeda H. Fang J. Factors affecting the dynamics and heterogeneity of the EPR effect: Pathophysiological and pathoanatomic features, drug formulations and physicochemical factors. Expert Opin. Drug Deliv. 2022 19 2 199 212 10.1080/17425247.2021.1874916 33430661
    [Google Scholar]
  30. Izci M. Maksoudian C. Manshian B.B. Soenen S.J. The use of alternative strategies for enhanced nanoparticle delivery to solid tumors. Chem. Rev. 2021 121 3 1746 1803 10.1021/acs.chemrev.0c00779 33445874
    [Google Scholar]
  31. Maeda H. The 35th anniversary of the discovery of epr effect: A new wave of nanomedicines for tumor-targeted drug delivery—personal remarks and future prospects. J. Pers. Med. 2021 11 3 229 10.3390/jpm11030229 33810037
    [Google Scholar]
  32. Penketh P.G. Williamson H.S. Baumann R.P. Shyam K. Design strategy for the EPR tumor-targeting of 1,2-Bis(sulfonyl)-1-alkylhydrazines. Molecules 2021 26 2 259 10.3390/molecules26020259 33419160
    [Google Scholar]
  33. Ma J. B. Shen J. M. Yue T. Wu Z. Y. Zhang X. L. Size-shrinkable and protein kinase Cα-recognizable nanoparticles for deep tumor penetration and cellular internalization. European J. Pharm. Sci. 2021 159 105693
    [Google Scholar]
  34. Liu Q. Song B. Tong S. Yang Q. Zhao H. Guo J. Tian X. Chang R. Wu J. Research progress on the anticancer activity of plant polysaccharides. RECENT PAT ANTI-CANC 2024 19 5 573 598 37724671
    [Google Scholar]
  35. Bhat A.A. Gupta G. Alharbi K.S. Afzal O. Altamimi A.S.A. Almalki W.H. Kazmi I. Al-Abbasi F.A. Alzarea S.I. Chellappan D.K. Singh S.K. MacLoughlin R. Oliver B.G. Dua K. Polysaccharide-based nanomedicines targeting lung cancer. Pharmaceutics 2022 14 12 2788 10.3390/pharmaceutics14122788 36559281
    [Google Scholar]
  36. Lindemann H. Kühne M. Grune C. Warncke P. Hofmann S. Koschella A. Godmann M. Fischer D. Heinzel T. Heinze T. Polysaccharide nanoparticles bearing HDAC inhibitor as nontoxic nanocarrier for drug delivery. Macromol. Biosci. 2020 20 6 2000039 10.1002/mabi.202000039 32249554
    [Google Scholar]
  37. Cao Y. Chen Z. Sun L. Lin Y. Yang Y. Cui X. Wang C. Herb polysaccharide-based drug delivery system: Fabrication, properties, and applications for immunotherapy. Pharmaceutics 2022 14 8 1703 10.3390/pharmaceutics14081703 36015329
    [Google Scholar]
  38. Han M. Fan Y.K. Zhang Y. Dong Z. Advances in herbal polysaccharides-based nano-drug delivery systems for cancer immunotherapy. J. Drug Target. 2024 32 3 311 324 10.1080/1061186X.2024.2309661 38269853
    [Google Scholar]
  39. Zhang G. Qiao J. Liu X. Liu Y. Wu J. Huang L. Ji D. Guan Q. Interactions of self-assembled Bletilla Striata polysaccharide nanoparticles with bovine serum albumin and biodistribution of its docetaxel-loaded nanoparticles. Pharmaceutics 2019 11 1 43 10.3390/pharmaceutics11010043 30669500
    [Google Scholar]
  40. Zhang Y. Cui Z. Mei H. Xu J. Zhou T. Cheng F. Wang K. Angelica sinensis polysaccharide nanoparticles as a targeted drug delivery system for enhanced therapy of liver cancer. Carbohydr. Polym. 2019 219 143 154 10.1016/j.carbpol.2019.04.041 31151511
    [Google Scholar]
  41. Li H. Gu L. Zhong Y. Chen Y. Zhang L. Zhang A.R. Sobol R.W. Chen T. Li J. Administration of polysaccharide from Panax notoginseng prolonged the survival of H22 tumor-bearing mice. OncoTargets Ther. 2016 9 3433 3441 27354815
    [Google Scholar]
  42. Liu S. Yang Y. Qu Y. Guo X. Yang X. Cui X. Wang C. Structural characterization of a novel polysaccharide from Panax notoginseng residue and its immunomodulatory activity on bone marrow dendritic cells. Int. J. Biol. Macromol. 2020 161 797 809 10.1016/j.ijbiomac.2020.06.117 32553971
    [Google Scholar]
  43. Liu Y.H. Qin H.Y. Zhong Y.Y. Li S. Wang H.J. Wang H. Chen L.L. Tang X. Li Y.L. Qian Z.Y. Li H.Y. Zhang L. Chen T. Neutral polysaccharide from Panax notoginseng enhanced cyclophosphamide antitumor efficacy in hepatoma H22-bearing mice. BMC Cancer 2021 21 1 37 10.1186/s12885‑020‑07742‑z 33413214
    [Google Scholar]
  44. Liu Y. Li S. Pu M. Qin H. Wang H. Zhao Y. Chen T. Structural characterization of polysaccharides isolated from Panax notoginseng medicinal residue and its protective effect on myelosuppression induced by cyclophosphamide. Chem. Biodivers. 2022 19 1 e202100681 e202100681 10.1002/cbdv.202100681 34817123
    [Google Scholar]
  45. Nallasamy L. Swaminathan A. Krishnamoorthy D. Murugavelu G.S. Selvaraj S.L. Optimization of anti-inflammatory activity of Rauvolfia tetraphylla L. Crude extracts using response surface methodology. Indian J Pharm Educ Res. 2024 58 3s s934 s943 10.5530/ijper.58.3s.94
    [Google Scholar]
  46. Ebrahimi V. Hashemi A. Optimizing recombinant production of L-asparaginase 1 from Saccharomyces cerevisiae using response surface methodology. Folia Microbiol. 2024 69 6 1205 1219 10.1007/s12223‑024‑01163‑2 38581537
    [Google Scholar]
  47. Kabadayı S.N. Sadiq N.B. Hamayun M. Park N.I. Kim H.Y. Impact of sodium silicate supplemented, IR-treated panax ginseng on extraction optimization for enhanced anti-tyrosinase and antioxidant activity: A response surface methodology (RSM) approach. Antioxidants 2023 13 1 54 10.3390/antiox13010054 38247479
    [Google Scholar]
  48. Committee N. P. People's Republic of China (PRC) Pharmacopoeia II (2020 Edition). china medical science press Beijing, China 2020 1154 1156
    [Google Scholar]
  49. Yan Z-J. Wu X-P. Wei P-P. Deng M-Y. Yang K. Zhang L-M. Ding Y-Z. Xia D. Ma B-S. Zhang L. Yuan X-Y. Chen T. Effective platform for enhancing the bioavailability and anti-cancer efficacy of norcantharidin: Nanoemulsion hybrid lipid carriers. J. Biomed. Nanotechnol. 2023 19 4 527 542 10.1166/jbn.2023.3574
    [Google Scholar]
  50. Khezri K. Saeedi M. Morteza-Semnani K. Akbari J. Hedayatizadeh-Omran A. A promising and effective platform for delivering hydrophilic depigmenting agents in the treatment of cutaneous hyperpigmentation: kojic acid nanostructured lipid carrier. Artif. Cells Nanomed. Biotechnol. 2021 49 1 38 47 10.1080/21691401.2020.1865993 33438443
    [Google Scholar]
  51. Wikiniyadhanee R. Lerksuthirat T. Stitchantrakul W. Chitphuk S. Takeda S. Dejsuphong D. Siemianowicz K. ATR inhibitor synergizes PARP inhibitor cytotoxicity in homologous recombination repair deficiency TK6 cell lines. BioMed Res. Int. 2023 2023 1 7891753 10.1155/2023/7891753 36794257
    [Google Scholar]
  52. Sartori G. Tarantelli C. Spriano F. Gaudio E. Cascione L. Mascia M. Barreca M. Arribas A.J. Licenziato L. Golino G. Ferragamo A. Pileri S. Damia G. Zucca E. Stathis A. Politz O. Wengner A.M. Bertoni F. The ATR inhibitor elimusertib exhibits anti‐lymphoma activity and synergizes with the PI3K inhibitor copanlisib. Br. J. Haematol. 2024 204 1 191 205 10.1111/bjh.19218 38011941
    [Google Scholar]
  53. Agrawal M. Saxena A.K. Agrawal S.K. Essential oil from Ocimum viride exerts caspase-3 interceded apoptosis in human leukemia HL-60 cells. S. Afr. J. Bot. 2024 175 193 200 10.1016/j.sajb.2024.10.021
    [Google Scholar]
  54. Liu Y. Wang Y. Wang J. Wang X. Chen L. Han T. Lian H. Gan M. Wang J. Fangchinoline suppresses hepatocellular carcinoma by regulating ROS accumulation via the TRIM7/Nrf2 signaling pathway. Phytomedicine 2024 135 156143 10.1016/j.phymed.2024.156143 39461200
    [Google Scholar]
  55. Li X. Li X. Chen L. Deng Y. Zheng Z. Ming Y. Tabersonine induces the apoptosis of human hepatocellular carcinoma in vitro and in vivo. Anticancer. Agents Med. Chem. 2024 24 10 764 772 10.2174/0118715206286612240303172230 38465429
    [Google Scholar]
  56. Zou Q. Wu X. Wang J. Xia D. Deng M. Ding Y. Dai Y. Zhao S. Chen T. Therapeutic effect of Panax notoginseng saponins combined with cyclophosphamide in mice bearing hepatocellular carcinoma H22 cell xenograft. Nan Fang Yi Ke Da Xue Xue Bao 2022 42 4 538 545 35527489
    [Google Scholar]
  57. Zhang J. Sang X. Yuan Y. Shen J. Fang Y. Qin M. Zheng H. Zhu Z. 4-Deoxy-ε-Pyrromycinone: A promising drug/lead compound to treat tumors. Drug Des. Devel. Ther. 2024 18 2367 2379 10.2147/DDDT.S461594 38911033
    [Google Scholar]
  58. Wang W. Tong C. Liu X. Li T. Liu B. Xiong W. Preparation and functional characterization of tumor-targeted folic acid-chitosan conjugated nanoparticles loaded with mitoxantrone. J. Cent. South Univ. 2015 22 9 3311 3317 10.1007/s11771‑015‑2871‑5
    [Google Scholar]
  59. Hornung A. Poettler M. Friedrich R. Zaloga J. Unterweger H. Lyer S. Nowak J. Odenbach S. Alexiou C. Janko C. Treatment efficiency of free and nanoparticle-loaded mitoxantrone for magnetic drug targeting in multicellular tumor spheroids. Molecules 2015 20 10 18016 18030 10.3390/molecules201018016 26437393
    [Google Scholar]
  60. Yan Z. Yang K. Tang X. Bi Y. Ding Y. Deng M. Xia D. Zhao Y. Chen T. Norcantharidin nanostructured lipid carrier (NCTD-NLC) suppresses the viability of human hepatocellular carcinoma HepG2 cells and accelerates the apoptosis. J. Immunol. Res. 2022 2022 0 1 10 10.1155/2022/3851604 35497873
    [Google Scholar]
  61. Li Q. Xu J. Research on the inhibitory effect of doxorubicin-loaded liposomes targeting GFAP for glioma cells. Anticancer. Agents Med. Chem. 2024 24 3 177 184 10.2174/0118715206265311231030102307 37936466
    [Google Scholar]
  62. Jiao Y. Li W. Yang W. Wang M. Xing Y. Wang S. Icaritin exerts anti-cancer effects through modulating pyroptosis and immune activities in hepatocellular carcinoma. Biomedicines 2024 12 8 1917 10.3390/biomedicines12081917 39200381
    [Google Scholar]
  63. Wang Q. Xing N. Zhang Z. Peng D. Li Y. Wang X. Wang R. He Y. Zeng Y. Kuang H. Optimization of steaming process for polysaccharides from panax notoginseng by box-behnken response surface methodology and comparison of immunomodulatory effects of raw and steamed panax notoginseng polysaccharides. Pharmacogn. Mag. 2021 17 76 743 751 10.4103/pm.pm_42_21
    [Google Scholar]
  64. Salek S. Moazamian E. Mohammadi Bardbori A. Shamsdin S.A. The anticancer effect of potential probiotic L. fermentum and L. plantarum in combination with 5-fluorouracil on colorectal cancer cells. World J. Microbiol. Biotechnol. 2024 40 5 139 139 10.1007/s11274‑024‑03929‑9 38514489
    [Google Scholar]
  65. Panpan W. Zijun Y. Mengyue D. Experimental study on anti-fatigue effect of polysaccharides of Panax notoginseng. Chinese Journal of Clinical Pharmacology 2024 40 1 87 91
    [Google Scholar]
  66. Rajappa S. Singh M. Uehara R. Schachterle S.E. Setia S. Cancer incidence and mortality trends in Asia based on regions and human development index levels: An analyses from GLOBOCAN 2020. Curr. Med. Res. Opin. 2023 39 8 1127 1137 10.1080/03007995.2023.2231761 37395248
    [Google Scholar]
  67. Li D. Wu Y. Yin H. Feng W. Ma X. Xiao H. Xin W. Li C. Panax Notoginseng polysaccharide stabilized gel-like Pickering emulsions: Stability and mechanism. Int. J. Biol. Macromol. 2023 249 1 125893 10.1016/j.ijbiomac.2023.125893 37473886
    [Google Scholar]
  68. Jiang X.L. Ma G.F. Zhao B.B. Meng Y. Chen L.L. Structural characterization and immunomodulatory activity of a novel polysaccharide from Panax notoginseng. Front. Pharmacol. 2023 14 1190233 10.3389/fphar.2023.1190233 37256230
    [Google Scholar]
  69. Qi H. Zhang Z. Liu J. Chen Z. Huang Q. Li J. Chen J. Wang M. Zhao D. Wang Z. Li X. Comparisons of isolation methods, structural features, and bioactivities of the polysaccharides from three common panax species: A review of recent progress. Molecules 2021 26 16 4997 10.3390/molecules26164997 34443587
    [Google Scholar]
  70. Qian Y. Mao J. Leng X. Zhu L. Rui X. Jin Z. Jiang H. Liu H. Zhang F. Bi X. Chen Z. Wang J. Co-delivery of proanthocyanidin and mitoxantrone induces synergistic immunogenic cell death to potentiate cancer immunotherapy. Biomater. Sci. 2022 10 16 4549 4560 10.1039/D2BM00611A 35790120
    [Google Scholar]
  71. Ma M. Liu X. Ma C. Guo R. Zhang X. Zhang Z. Ren X. Enhancing the antitumor immunosurveillance of PD-L1-targeted gene therapy for metastatic melanoma using cationized Panax Notoginseng polysaccharide. Int. J. Biol. Macromol. 2023 226 1309 1318 10.1016/j.ijbiomac.2022.11.242 36442564
    [Google Scholar]
  72. Wang C. Liu S. Xu J. Gao M. Qu Y. Liu Y. Yang Y. Cui X. Dissolvable microneedles based on Panax notoginseng polysaccharide for transdermal drug delivery and skin dendritic cell activation. Carbohydr. Polym. 2021 268 118211 10.1016/j.carbpol.2021.118211 34127215
    [Google Scholar]
  73. He L. Xu K. Niu L. Lin L. Astragalus polysaccharide (APS) attenuated PD-L1-mediated immunosuppression via the miR-133a-3p/MSN axis in HCC. Pharm. Biol. 2022 60 1 1710 1720 10.1080/13880209.2022.2112963 36086826
    [Google Scholar]
  74. Guo T. Yang Y. Gao M. Qu Y. Guo X. Liu Y. Cui X. Wang C. Lepidium meyenii Walpers polysaccharide and its cationic derivative re-educate tumor-associated macrophages for synergistic tumor immunotherapy. Carbohydr. Polym. 2020 250 116904 10.1016/j.carbpol.2020.116904 33049880
    [Google Scholar]
  75. Mohamed S.S. Ibrahim G.S. Ghoneim M.A.M. Hassan A.I. Evaluating the role of polysaccharide extracted from Pleurotus columbinus on cisplatin-induced oxidative renal injury. Sci. Rep. 2023 13 1 835 10.1038/s41598‑022‑27081‑2 36646729
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018351085250212080829
Loading
/content/journals/cdd/10.2174/0115672018351085250212080829
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test