Skip to content
2000
image of Alleviation of Tumor Invasion by the Development of Natural Polymer-based Low-risk Chemotherapeutic Systems – review on the Malignant Carcinoma Treatments

Abstract

Introduction/Objective

The spread of tumors (48% in men and 51% in women), as well as the protection of malignant tumors by stromal cells and complex blood vessels, pose significant challenges to drug delivery to tumors. Modern chemotherapy, on the other hand, addresses tumor growth suppression by at least 60% through versatile formulation systems and numerous modifications to drug delivery systems. The renewable and naturally occurring polymers present invariably in all living cells form the fundamental foundation for most anticancer drug development. The review aims to discuss in detail the preparations of polysaccharide, lipid, and protein-based drug-loading vehicles for the targeted delivery of prominent anticancer drugs. It also provides an explanation of drug distribution in blood (cumulative releases of nearly 80% drug) and drug accumulation at tumor sites (1–5 mg/kg) due to enhanced permeability and retention (EPR).

Methods

Specific delivery examples for treating colorectal and breast carcinomas have been presented to distinguish the varied drug administration, bioavailability, and tumor internalization mechanisms between sugar, fatty acid, and amino acid polymers. Current therapy possibilities based on cutting-edge literature are provided, along with drug delivery systems tailored to tumor location and invasive properties.

Results

The unique combinations of the three natural polymers provide unparalleled solutions to minimize the toxicity (<20% drug release) of the chemotherapeutic drugs on normal tissues. Moreover, the development of a consolidated drug delivery system has contributed to a substantial reduction (dose reduction from 10.43 µM to 1.9 µM) in the undesirable consequences of higher dosages of chemotherapeutic drugs.

Conclusion

The review extensively covers safe chemotherapeutic systems with significant advantages (tumor volume shrinkage of 4T1 cells from 1000 mm3 to 200 mm3) in clinical applications of carcinoma treatments using natural polymers.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018349688241008220007
2024-10-14
2024-11-23
Loading full text...

Full text loading...

References

  1. Shih I.M. Wang Y. Wang T.L. The origin of ovarian cancer species and precancerous landscape. Am. J. Pathol. 2021 191 1 26 39 10.1016/j.ajpath.2020.09.006 33011111
    [Google Scholar]
  2. Patten J. Wang K. Fibronectin in development and wound healing. Adv. Drug Deliv. Rev. 2021 170 353 368 10.1016/j.addr.2020.09.005 32961203
    [Google Scholar]
  3. Majidpoor J. Mortezaee K. Steps in metastasis: An updated review. Med. Oncol. 2021 38 1 3 10.1007/s12032‑020‑01447‑w 33394200
    [Google Scholar]
  4. Wang Y. Minden A. Current molecular combination thera-pies used for the treatment of breast cancer. Int. J. Mol. Sci. 2022 23 19 11046 10.3390/ijms231911046 36232349
    [Google Scholar]
  5. Mortezaee K. Narmani A. Salehi M. Bagheri H. Farhood B. Haghi-Aminjan H. Najafi M. Synergic effects of nano-particles-mediated hyperthermia in radiothera-py/chemotherapy of cancer. Life Sci. 2021 269 119020 10.1016/j.lfs.2021.119020 33450258
    [Google Scholar]
  6. Yadav A. Singh S. Sohi H. Dang S. Advances in delivery of chemotherapeutic agents for cancer treatment. AAPS PharmSciTech 2021 23 1 25 10.1208/s12249‑021‑02174‑9 34907501
    [Google Scholar]
  7. Ioele G. Chieffallo M. Occhiuzzi M.A. De Luca M. Garofalo A. Ragno G. Grande F. Anticancer drugs: Recent strategies to improve stability profile, pharmacokinetic and pharmacodynamic properties. Molecules 2022 27 17 5436 10.3390/molecules27175436 36080203
    [Google Scholar]
  8. Rahim M.A. Jan N. Khan S. Shah H. Madni A. Khan A. Jabar A. Khan S. Elhissi A. Hussain Z. Aziz H.C. Sohail M. Khan M. Thu H.E. Recent advancements in stimuli responsive drug delivery platforms for active and pas-sive cancer targeting. Cancers (Basel) 2021 13 4 670 10.3390/cancers13040670 33562376
    [Google Scholar]
  9. van den Boogaard W.M.C. Komninos D.S.J. Vermeij W.P. Chemotherapy side-effects: Not all DNA damage is equal. Cancers (Basel) 2022 14 3 627 10.3390/cancers14030627 35158895
    [Google Scholar]
  10. Gao Q. Feng J. Liu W. Wen C. Wu Y. Liao Q. Zou L. Sui X. Xie T. Zhang J. Hu Y. Opportunities and challeng-es for co-delivery nanomedicines based on combination of phytochemicals with chemotherapeutic drugs in cancer treat-ment. Adv. Drug Deliv. Rev. 2022 188 114445 10.1016/j.addr.2022.114445 35820601
    [Google Scholar]
  11. Ashrafizadeh M. Zarrabi A. Hashemi F. Moghadam E.R. Hashemi F. Entezari M. Hushmandi K. Mohammadinejad R. Najafi M. Curcumin in cancer therapy: A novel adjunct for combination chemotherapy with paclitaxel and alleviation of its adverse effects. Life Sci. 2020 256 117984 10.1016/j.lfs.2020.117984 32593707
    [Google Scholar]
  12. Wang H. Huang Y. Combination therapy based on nano codelivery for overcoming cancer drug resistance. Med. Drug Discov. 2020 6 100024 10.1016/j.medidd.2020.100024
    [Google Scholar]
  13. Yap K.M. Sekar M. Fuloria S. Wu Y.S. Gan S.H. Mat Rani N.N.I. Subramaniyan V. Kokare C. Lum P.T. Begum M.Y. Mani S. Meenakshi D.U. Sathasivam K.V. Fuloria N.K. Drug delivery of natural products through nanocarriers for effective breast cancer therapy: A compre-hensive review of literature. Int. J. Nanomedicine 2021 16 7891 7941 10.2147/IJN.S328135 34880614
    [Google Scholar]
  14. Samadian H. Maleki H. Allahyari Z. Jaymand M. Natural polymers-based light-induced hydrogels: Promising bio-materials for biomedical applications. Coord. Chem. Rev. 2020 420 213432 10.1016/j.ccr.2020.213432
    [Google Scholar]
  15. Al-Shalawi F.D. Azmah Hanim M.A. Ariffin M.K.A. Looi Seng Kim C. Brabazon D. Calin R. Al-Osaimi M.O. Bio-degradable synthetic polymer in orthopaedic application: A review. Mater. Today Proc. 2023 74 540 546 10.1016/j.matpr.2022.12.254
    [Google Scholar]
  16. Prete S. Dattilo M. Patitucci F. Pezzi G. Parisi O.I. Puo-ci F. Natural and synthetic polymeric biomaterials for appli-cation in wound management. J. Funct. Biomater. 2023 14 9 455 10.3390/jfb14090455 37754869
    [Google Scholar]
  17. Meng Q. Zhong S. Xu L. Wang J. Zhang Z. Gao Y. Cui X. Review on design strategies and considerations of polysaccharide-based smart drug delivery systems for cancer therapy. Carbohydr. Polym. 2022 279 119013 10.1016/j.carbpol.2021.119013 34980356
    [Google Scholar]
  18. Dattilo M. Patitucci F. Prete S. Parisi O.I. Puoci F. Poly-saccharide-based hydrogels and their application as drug de-livery systems in cancer treatment: A review. J. Funct. Biomater. 2023 14 2 55 10.3390/jfb14020055 36826854
    [Google Scholar]
  19. Zhang M. Ma H. Wang X. Yu B. Cong H. Shen Y. Polysaccharide-based nanocarriers for efficient transvascular drug delivery. J. Control. Release 2023 354 167 187 10.1016/j.jconrel.2022.12.051 36581260
    [Google Scholar]
  20. Ashrafizadeh M. Delfi M. Hashemi F. Zabolian A. Saleki H. Bagherian M. Azami N. Farahani M.V. Sharifzadeh S.O. Hamzehlou S. Hushmandi K. Makvandi P. Zarrabi A. Hamblin M.R. Varma R.S. Biomedical appli-cation of chitosan-based nanoscale delivery systems: Poten-tial usefulness in siRNA delivery for cancer therapy. Carbohydr. Polym. 2021 260 117809 10.1016/j.carbpol.2021.117809 33712155
    [Google Scholar]
  21. Zhang Y.M. Liu Y.H. Liu Y. Cyclodextrin‐based mul-tistimuli‐responsive supramolecular assemblies and their bio-logical functions. Adv. Mater. 2020 32 3 1806158 10.1002/adma.201806158 30773709
    [Google Scholar]
  22. Xue H. Ju Y. Ye X. Dai M. Tang C. Liu L. Construc-tion of intelligent drug delivery system based on polysaccha-ride-derived polymer micelles: A review. Int. J. Biol. Macromol. 2023 ••• 128048 10.1016/j.ijbiomac.2023.128048 37967605
    [Google Scholar]
  23. Zhou Y. Chen X. Cao J. Gao H. Overcoming the biologi-cal barriers in the tumor microenvironment for improving drug delivery and efficacy. J. Mater. Chem. B Mater. Biol. Med. 2020 8 31 6765 6781 10.1039/D0TB00649A 32315375
    [Google Scholar]
  24. He X. Yang Y. Han Y. Cao C. Zhang Z. Li L. Xiao C. Guo H. Wang L. Han L. Qu Z. Liu N. Han S. Xu F. Extracellular matrix physical properties govern the diffusion of nanoparticles in tumor microenvironment. Proc. Natl. Acad. Sci. USA 2023 120 1 e2209260120 10.1073/pnas.2209260120 36574668
    [Google Scholar]
  25. Winkler J. Abisoye-Ogunniyan A. Metcalf K.J. Werb Z. Concepts of extracellular matrix remodelling in tumour pro-gression and metastasis. Nat. Commun. 2020 11 1 5120 10.1038/s41467‑020‑18794‑x 33037194
    [Google Scholar]
  26. Shinde V.R. Revi N. Murugappan S. Singh S.P. Rengan A.K. Enhanced permeability and retention effect: A key facili-tator for solid tumor targeting by nanoparticles. Photodiagn. Photodyn. Ther. 2022 39 102915 10.1016/j.pdpdt.2022.102915 35597441
    [Google Scholar]
  27. Pathak A. Pal A.K. Roy S. Nandave M. Jain K. Role of angiogenesis and its biomarkers in development of targeted tumor therapies. Stem Cells Int. 2024 2024 1 9077926 10.1155/2024/9077926 38213742
    [Google Scholar]
  28. Wu Q. Hu Y. Yu B. Hu H. Xu F.J. Polysaccharide-based tumor microenvironment-responsive drug delivery systems for cancer therapy. J. Control. Release 2023 362 19 43 10.1016/j.jconrel.2023.08.019 37579973
    [Google Scholar]
  29. Zhou H. Liu C. Yu S. Shafiq F. Qiao W. Hyaluronic acid anchored paclitaxel nanoparticles to solubilize for drug deliv-ery. Eur. Polym. J. 2023 201 112542 10.1016/j.eurpolymj.2023.112542
    [Google Scholar]
  30. Zhao P. Liu S. Wang L. Liu G. Cheng Y. Lin M. Sui K. Zhang H. Alginate mediated functional aggregation of gold nanoclusters for systemic photothermal therapy and efficient renal clearance. Carbohydr. Polym. 2020 241 116344 10.1016/j.carbpol.2020.116344 32507204
    [Google Scholar]
  31. Brito A. Kassem S. Reis R.L. Ulijn R.V. Pires R.A. Pashkuleva I. Carbohydrate amphiphiles for supramolecular biomaterials: Design, self-assembly, and applications. Chem 2021 7 11 2943 2964 10.1016/j.chempr.2021.04.011
    [Google Scholar]
  32. Li H. Deng C. Tan Y. Dong J. Zhao Y. Wang X. Yang X. Luo J. Gao H. Huang Y. Zhang Z.R. Gong T. Chon-droitin sulfate-based prodrug nanoparticles enhance photody-namic immunotherapy via Golgi apparatus targeting. Acta Biomater. 2022 146 357 369 10.1016/j.actbio.2022.05.014 35577045
    [Google Scholar]
  33. Jeong J.Y. Hong E.H. Lee S.Y. Lee J.Y. Song J.H. Ko S.H. Shim J.S. Choe S. Kim D.D. Ko H.J. Cho H.J. Bo-ronic acid-tethered amphiphilic hyaluronic acid derivative-based nanoassemblies for tumor targeting and penetration. Acta Biomater. 2017 53 414 426 10.1016/j.actbio.2017.02.030 28216300
    [Google Scholar]
  34. Zhang W. Taheri-Ledari R. Ganjali F. Mirmohammadi S.S. Qazi F.S. Saeidirad M. KashtiAray, A.; Zarei-Shokat, S.; Tian, Y.; Maleki, A. Effects of morphology and size of nanoscale drug carriers on cellular uptake and internalization process: A review. RSC Advances 2022 13 1 80 114 10.1039/D2RA06888E 36605676
    [Google Scholar]
  35. Bansal K. Jha C.K. Bhatia D. Shekhar H. Ultrasound-enabled therapeutic delivery and regenerative medicine: Phys-ical and biological perspectives. ACS Biomater. Sci. Eng. 2021 7 9 4371 4387 10.1021/acsbiomaterials.1c00276 34460238
    [Google Scholar]
  36. Kalyane D. Raval N. Maheshwari R. Tambe V. Kalia K. Tekade R.K. Employment of enhanced permeability and re-tention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater. Sci. Eng. C 2019 98 1252 1276 10.1016/j.msec.2019.01.066 30813007
    [Google Scholar]
  37. Gao Y. Ma Q. Cao J. Shi Y. Wang J. Ma H. Sun Y. Song Y. Bifunctional alginate/chitosan stabilized perfluoro-hexane nanodroplets as smart vehicles for ultrasound and pH responsive delivery of anticancer agents. Int. J. Biol. Macromol. 2021 191 1068 1078 10.1016/j.ijbiomac.2021.09.166 34600955
    [Google Scholar]
  38. Khan A.R. Yang X. Du X. Yang H. Liu Y. Khan A.Q. Zhai G. Chondroitin sulfate derived theranostic and therapeu-tic nanocarriers for tumor-targeted drug delivery. Carbohydr. Polym. 2020 233 115837 10.1016/j.carbpol.2020.115837 32059890
    [Google Scholar]
  39. Enemark M.B. Hybel T.E. Madsen C. Lauridsen K.L. Honoré B. Plesner T.L. Hamilton-Dutoit S. d’Amore F. Ludvigsen M. Tumor-tissue expression of the hyaluronic ac-id receptor RHAMM predicts histological transformation in follicular lymphoma patients. Cancers (Basel) 2022 14 5 1316 10.3390/cancers14051316 35267625
    [Google Scholar]
  40. Spinelli F.M. Vitale D.L. Sevic I. Alaniz L. Hyaluronan in the tumor microenvironment. Adv. Exp. Med. Biol. 2020 1245 67 83 10.1007/978‑3‑030‑40146‑7_3
    [Google Scholar]
  41. Luan X. Kong H. He P. Yang G. Zhu D. Guo L. Wei G. Self‐assembled peptide‐based nanodrugs: molecular de-sign, synthesis, functionalization, and targeted tumor bioimag-ing and biotherapy. Small 2023 19 3 2205787 10.1002/smll.202205787 36440657
    [Google Scholar]
  42. Puluhulawa L.E. Joni I.M. Elamin K.M. Mohammed A.F.A. Muchtaridi M. Wathoni N. Chitosan–hyaluronic ac-id nanoparticles for active targeting in cancer therapy. Polymers (Basel) 2022 14 16 3410 10.3390/polym14163410 36015667
    [Google Scholar]
  43. Bognanni N. Viale M. La Piana L. Strano S. Gangemi R. Lombardo C. Cambria M.T. Vecchio G. Hyaluronan-cyclodextrin conjugates as doxorubicin delivery systems. Pharmaceutics 2023 15 2 374 10.3390/pharmaceutics15020374 36839696
    [Google Scholar]
  44. Sui J. He M. Yang Y. Ma M. Guo Z. Zhao M. Liang J. Sun Y. Fan Y. Zhang X. Reversing P-glycoprotein-associated multidrug resistance of breast cancer by targeted acid-cleavable polysaccharide nanoparticles with lapatinib sensitization. ACS Appl. Mater. Interfaces 2020 12 46 51198 51211 10.1021/acsami.0c13986 33147005
    [Google Scholar]
  45. Hou X. Zhong D. Chen H. Gu Z. Gong Q. Ma X. Zhang H. Zhu H. Luo K. Recent advances in hyaluronic acid-based nanomedicines: Preparation and application in cancer therapy. Carbohydr. Polym. 2022 292 119662 10.1016/j.carbpol.2022.119662 35725165
    [Google Scholar]
  46. Zheng S. Jin Z. Han J. Cho S. Nguyen V.D. Ko S.Y. Park J.O. Park S. Preparation of HIFU-triggered tumor-targeted hyaluronic acid micelles for controlled drug release and enhanced cellular uptake. Colloids Surf. B Biointerfaces 2016 143 27 36 10.1016/j.colsurfb.2016.03.019 26998864
    [Google Scholar]
  47. Yang Z. Li P. Chen Y. Dong E. Feng Z. He Z. Zhou C. Wang C. Liu Y. Feng C. Preparation of zinc phthalocy-anine-loaded amphiphilic phosphonium chitosan nanomi-celles for enhancement of photodynamic therapy efficacy. Colloids Surf. B Biointerfaces 2021 202 111693 10.1016/j.colsurfb.2021.111693 33774518
    [Google Scholar]
  48. Ishida J. Alli S. Bondoc A. Golbourn B. Sabha N. Mi-kloska K. Krumholtz S. Srikanthan D. Fujita N. Luck A. Maslink C. Smith C. Hynynen K. Rutka J. MRI-guided focused ultrasound enhances drug delivery in experi-mental diffuse intrinsic pontine glioma. J. Control. Release 2021 330 1034 1045 10.1016/j.jconrel.2020.11.010 33188825
    [Google Scholar]
  49. Maghsoudinia F. Akbari-Zadeh H. Aminolroayaei F. Bir-gani F.F. Shanei A. Samani R.K. Ultrasound responsive Gd-DOTA/doxorubicin-loaded nanodroplet as a theranostic agent for magnetic resonance image-guided controlled release drug delivery of melanoma cancer. Eur. J. Pharm. Sci. 2022 174 106207 10.1016/j.ejps.2022.106207 35577179
    [Google Scholar]
  50. Nel J. Elkhoury K. Velot É. Bianchi A. Acherar S. Francius G. Tamayol A. Grandemange S. Arab-Tehrany E. Functionalized liposomes for targeted breast cancer drug delivery. Bioact. Mater. 2023 24 401 437 10.1016/j.bioactmat.2022.12.027 36632508
    [Google Scholar]
  51. Passeri E. Bun P. Elkhoury K. Linder M. Malaplate C. Yen F.T. Arab-Tehrany E. Transfer phenomena of nanolip-osomes by live imaging of primary cultures of cortical neu-rons. Pharmaceutics 2022 14 10 2172 10.3390/pharmaceutics14102172 36297607
    [Google Scholar]
  52. Musacchio T. Torchilin V.P. Advances in polymeric and lipid-core micelles as drug delivery systems. Polymeric biomaterials. CRC Press 2020 1007 1026 10.1201/9780429142413
    [Google Scholar]
  53. Ebert R. Adler A. Suzuki H. Fromell K. Ekdahl K.N. Nilsson B. Teramura Y. Liposome surface modifications-engineering techniques. Liposomes in Drug Delivery. Aca-demic Press 2024 193 215 10.1016/B978‑0‑443‑15491‑1.00019‑5
    [Google Scholar]
  54. Lima P.H.C. Butera A.P. Cabeça L.F. Ribeiro-Viana R.M. Liposome surface modification by phospholipid chemical re-actions. Chem. Phys. Lipids 2021 237 105084 10.1016/j.chemphyslip.2021.105084 33891960
    [Google Scholar]
  55. Majumder J. Minko T. Multifunctional and stimuli-responsive nanocarriers for targeted therapeutic delivery. Expert Opin. Drug Deliv. 2021 18 2 205 227 10.1080/17425247.2021.1828339 32969740
    [Google Scholar]
  56. Houshmand M. Garello F. Circosta P. Stefania R. Aime S. Saglio G. Giachino C. Nanocarriers as magic bullets in the treatment of leukemia. Nanomaterials (Basel) 2020 10 2 276 10.3390/nano10020276 32041219
    [Google Scholar]
  57. Chai Y.J. Cheng C.Y. Liao Y.H. Lin C.H. Hsieh C.L. Heterogeneous nanoscopic lipid diffusion in the live cell membrane and its dependency on cholesterol. Biophys. J. 2022 121 16 3146 3161 10.1016/j.bpj.2022.07.008 35841144
    [Google Scholar]
  58. Gote V. Pal D. Octreotide-targeted Lcn2 siRNA PEGylated liposomes as a treatment for metastatic breast cancer. Bioengineering (Basel) 2021 8 4 44 10.3390/bioengineering8040044 33916786
    [Google Scholar]
  59. Li Y. Tan X. Liu X. Liu L. Fang Y. Rao R. Ren Y. Yang X. Liu W. Enhanced anticancer effect of doxorubicin by TPGS-coated liposomes with Bcl-2 siRNA-corona for dual suppression of drug resistance. Asian J. Pharm. Sci. 2020 15 5 646 660 10.1016/j.ajps.2019.10.003 33193866
    [Google Scholar]
  60. Ashrafizadeh M. Delfi M. Zarrabi A. Bigham A. Sharifi E. Rabiee N. Paiva-Santos A.C. Kumar A.P. Tan S.C. Hushmandi K. Ren J. Zare E.N. Makvandi P. Stimuli-responsive liposomal nanoformulations in cancer therapy: Pre-clinical & clinical approaches. J. Control. Release 2022 351 50 80 10.1016/j.jconrel.2022.08.001 35934254
    [Google Scholar]
  61. Zhang K. Fang X. You Q. Lin Y. Ma L. Xu S. Ge Y. Xu H. Yang Y. Wang C. Novel peptide-directed liposomes for targeted combination therapy of breast tumors. Mater. Adv. 2020 1 9 3483 3495 10.1039/D0MA00536C
    [Google Scholar]
  62. Carvalho L.S. Gonçalves N. Fonseca N.A. Moreira J.N. Cancer stem cells and nucleolin as drivers of carcinogenesis. Pharmaceuticals (Basel) 2021 14 1 60 10.3390/ph14010060 33451077
    [Google Scholar]
  63. Valério-Fernandes Â. Fonseca N.A. Gonçalves N. Cruz A.F. Pereira M.I. Gregório A.C. Moura V. Ladeirinha A.F. Alarcão A. Gonçalves J. Abrunhosa A. Melo J.B. Carvalho L. Simões S. Moreira J.N. Nucleolin overexpres-sion predicts patient prognosis while providing a framework for targeted therapeutic intervention in lung cancer. Cancers (Basel) 2022 14 9 2217 10.3390/cancers14092217 35565346
    [Google Scholar]
  64. Gu Z. Da Silva C. Van der Maaden K. Ossendorp F. Cruz L. Liposome-based drug delivery systems in cancer immunotherapy. Pharmaceutics 2020 12 11 1054 10.3390/pharmaceutics12111054 33158166
    [Google Scholar]
  65. Kamoun W.S. Dugast A.S. Suchy J.J. Grabow S. Fulton R.B. Sampson J.F. Luus L. Santiago M. Koshkaryev A. Sun G. Askoxylakis V. Tam E. Huang Z.R. Drummond D.C. Sawyer A.J. Synergy between EphA2-ILs-DTXp, a novel EphA2-targeted nanoliposomal taxane, and PD-1 in-hibitors in preclinical tumor models. Mol. Cancer Ther. 2020 19 1 270 281 10.1158/1535‑7163.MCT‑19‑0414 31597714
    [Google Scholar]
  66. Ferraris C. Cavalli R. Panciani P.P. Battaglia L. Overcom-ing the blood–brain barrier: Successes and challenges in de-veloping nanoparticle-mediated drug delivery systems for the treatment of brain tumours. Int. J. Nanomedicine 2020 15 2999 3022 10.2147/IJN.S231479 32431498
    [Google Scholar]
  67. Dong C. Yu X. Jin K. Qian J. Overcoming brain barriers through surface-functionalized liposomes for glioblastoma therapy; Current status, challenges and future perspective. Nanomedicine 2023 18 30 2161 2184 10.2217/nnm‑2023‑0172 38180008
    [Google Scholar]
  68. Li M. Li S. Li Y. Li X. Yang G. Li M. Xie Y. Su W. Wu J. Jia L. Li S. Ma W. Li H. Guo N. Yu P. Cationic liposomes co-deliver chemotherapeutics and siRNA for the treatment of breast cancer. Eur. J. Med. Chem. 2022 233 114198 10.1016/j.ejmech.2022.114198 35245829
    [Google Scholar]
  69. Kumar V.B. Ozguney B. Vlachou A. Chen Y. Gazit E. Tamamis P. Peptide self-assembled nanocarriers for cancer drug delivery. J. Phys. Chem. B 2023 127 9 1857 1871 10.1021/acs.jpcb.2c06751 36812392
    [Google Scholar]
  70. Li Y. Si R. Wang J. Hai P. Zheng Y. Zhang Q. Pan X. Zhang J. Discovery of novel antibody-drug conjugates bear-ing tissue protease specific linker with both anti-angiogenic and strong cytotoxic effects. Bioorg. Chem. 2023 137 106575 10.1016/j.bioorg.2023.106575 37148706
    [Google Scholar]
  71. Karami E. Sabatier J.M. Behdani M. Irani S. Kazemi-Lomedasht F. A nanobody-derived mimotope against VEGF inhibits cancer angiogenesis. J. Enzyme Inhib. Med. Chem. 2020 35 1 1233 1239 10.1080/14756366.2020.1758690 32441172
    [Google Scholar]
  72. Mehrotra N. Kharbanda S. Singh H. Peptide-based combi-nation nanoformulations for cancer therapy. Nanomedicine 2020 15 22 2201 2217 10.2217/nnm‑2020‑0220 32914691
    [Google Scholar]
  73. Márquez-López A. Fanarraga M.L. AB toxins as high-affinity ligands for cell targeting in cancer therapy. Int. J. Mol. Sci. 2023 24 13 11227 10.3390/ijms241311227 37446406
    [Google Scholar]
  74. Paul M. Itoo A.M. Ghosh B. Biswas S. Current trends in the use of human serum albumin for drug delivery in cancer. Expert Opin. Drug Deliv. 2022 19 11 1449 1470 10.1080/17425247.2022.2134341 36253957
    [Google Scholar]
  75. Song Z. Chen X. You X. Huang K. Dhinakar A. Gu Z. Wu J. Self-assembly of peptide amphiphiles for drug deliv-ery: The role of peptide primary and secondary structures. Biomater. Sci. 2017 5 12 2369 2380 10.1039/C7BM00730B 29051950
    [Google Scholar]
  76. Pitz M.E. Nukovic A.M. Elpers M.A. Alexander-Bryant A.A. Factors affecting secondary and supramolecular struc-tures of self‐assembling peptide nanocarriers. Macromol. Biosci. 2022 22 2 2100347 10.1002/mabi.202100347 34800001
    [Google Scholar]
  77. Sivagnanam S. Das K. Basak M. Mahata T. Stewart A. Maity B. Das P. Self-assembled dipeptide based fluorescent nanoparticles as a platform for developing cellular imaging probes and targeted drug delivery chaperones. Nanoscale Adv. 2022 4 6 1694 1706 10.1039/D1NA00885D 36134376
    [Google Scholar]
  78. Parisi E. Garcia A.M. Marson D. Posocco P. Marchesan S. Supramolecular tripeptide hydrogel assembly with 5-fluorouracil. Gels 2019 5 1 5 10.3390/gels5010005 30691142
    [Google Scholar]
  79. Kumar S. Bajaj A. Advances in self-assembled injectable hydrogels for cancer therapy. Biomater. Sci. 2020 8 8 2055 2073 10.1039/D0BM00146E 32129390
    [Google Scholar]
  80. Sajid M.I. Moazzam M. Stueber R. Park S.E. Cho Y. Malik N.A. Tiwari R.K. Applications of amphipathic and cationic cyclic cell-penetrating peptides: Significant therapeu-tic delivery tool. Peptides 2021 141 170542 10.1016/j.peptides.2021.170542 33794283
    [Google Scholar]
  81. Gong Z. Liu X. Zhou B. Wang G. Guan X. Xu Y. Zhang J. Hong Z. Cao J. Sun X. Gao Z. Lu H. Pan X. Bai J. Tumor acidic microenvironment-induced drug release of RGD peptide nanoparticles for cellular uptake and cancer therapy. Colloids Surf. B Biointerfaces 2021 202 111673 10.1016/j.colsurfb.2021.111673 33714186
    [Google Scholar]
  82. Cheng S. Brenière-Letuffe D. Ahola V. Wong A.O.T. Keung H.Y. Gurung B. Zheng Z. Costa K.D. Lieu D.K. Keung W. Li R.A. Single-cell RNA sequencing reveals matu-ration trajectory in human pluripotent stem cell-derived cardi-omyocytes in engineered tissues. iScience 2023 26 4 106302 10.1016/j.isci.2023.106302 36950112
    [Google Scholar]
  83. Chen Y. Orr A.A. Tao K. Wang Z. Ruggiero A. Shimon L.J.W. Schnaider L. Goodall A. Rencus-Lazar S. Gilead S. Slutsky I. Tamamis P. Tan Z. Gazit E. High-efficiency fluorescence through bioinspired supramolecular self-assembly. ACS Nano 2020 14 3 2798 2807 10.1021/acsnano.9b10024 32013408
    [Google Scholar]
  84. Qing R. Hao S. Smorodina E. Jin D. Zalevsky A. Zhang S. Protein design: From the aspect of water solubility and stability. Chem. Rev. 2022 122 18 14085 14179 10.1021/acs.chemrev.1c00757 35921495
    [Google Scholar]
  85. Du J. Lin Z. Fu X.H. Gu X.R. Lu G. Hou J. Research progress of the chemokine/chemokine receptor axes in the oncobiology of multiple myeloma (MM). Cell Commun. Signal. 2024 22 1 177 10.1186/s12964‑024‑01544‑7 38475811
    [Google Scholar]
  86. Ferrer F. Fanciullino R. Milano G. Ciccolini J. Towards rational cancer therapeutics: optimizing dosing, delivery, scheduling, and combinations. Clin. Pharmacol. Ther. 2020 108 3 458 470 10.1002/cpt.1954 32557660
    [Google Scholar]
  87. Xi Y. Xu P. Global colorectal cancer burden in 2020 and projections to 2040. Transl. Oncol. 2021 14 10 101174 10.1016/j.tranon.2021.101174 34243011
    [Google Scholar]
  88. Arnold M. Morgan E. Rumgay H. Mafra A. Singh D. Laversanne M. Vignat J. Gralow J.R. Cardoso F. Siesling S. Soerjomataram I. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast 2022 66 15 23 10.1016/j.breast.2022.08.010 36084384
    [Google Scholar]
  89. Kim M.Y. Breast cancer metastasis. Adv. Exp. Med. Biol. 2021 1187 183 204 10.1007/978‑981‑32‑9620‑6_9
    [Google Scholar]
  90. Tang M. Wang H. Cao Y. Zeng Z. Shan X. Wang L. Nomogram for predicting occurrence and prognosis of liver metastasis in colorectal cancer: A population-based study. Int. J. Colorectal Dis. 2021 36 2 271 282 10.1007/s00384‑020‑03722‑8 32965529
    [Google Scholar]
  91. Zafar S.N. Hu C.Y. Snyder R.A. Cuddy A. You Y.N. Lowenstein L.M. Volk R.J. Chang G.J. Predicting risk of recurrence after colorectal cancer surgery in the United States: An analysis of a special commission on cancer national study. Ann. Surg. Oncol. 2020 27 8 2740 2749 10.1245/s10434‑020‑08238‑7 32080809
    [Google Scholar]
  92. Riggio A.I. Varley K.E. Welm A.L. The lingering mysteries of metastatic recurrence in breast cancer. Br. J. Cancer 2021 124 1 13 26 10.1038/s41416‑020‑01161‑4 33239679
    [Google Scholar]
  93. Krasteva N. Georgieva M. Promising therapeutic strategies for colorectal cancer treatment based on nanomaterials. Pharmaceutics 2022 14 6 1213 10.3390/pharmaceutics14061213 35745786
    [Google Scholar]
  94. van der Zanden S.Y. Qiao X. Neefjes J. New insights into the activities and toxicities of the old anticancer drug doxoru-bicin. FEBS J. 2021 288 21 6095 6111 10.1111/febs.15583 33022843
    [Google Scholar]
  95. Askarizadeh A. Mashreghi M. Mirhadi E. Mirzavi F. Shargh V.H. Badiee A. Alavizadeh S.H. Arabi L. Jaafari M.R. Doxorubicin-loaded liposomes surface engineered with the matrix metalloproteinase-2 cleavable polyethylene glycol conjugate for cancer therapy. Cancer Nanotechnol. 2023 14 1 18 10.1186/s12645‑023‑00169‑8 36910721
    [Google Scholar]
  96. Yazdian-Robati R. Amiri E. Kamali H. Khosravi A. Taghdisi S.M. Jaafari M.R. Mashreghi M. Moosavian S.A. CD44-specific short peptide A6 boosts cellular uptake and anticancer efficacy of PEGylated liposomal doxorubicin in vitro and in vivo. Cancer Nanotechnol. 2023 14 1 84 10.1186/s12645‑023‑00236‑0
    [Google Scholar]
  97. Solomevich S.O. Aharodnikau U.E. Dmitruk E.I. Ni-kishau P.A. Bychkovsky P.M. Salamevich D.A. Jiang G. Pavlov K.I. Sun Y. Yurkshtovich T.L. Chitosan – dextran phosphate carbamate hydrogels for locally controlled co-delivery of doxorubicin and indomethacin: From computation study to in vivo pharmacokinetics. Int. J. Biol. Macromol. 2023 228 273 285 10.1016/j.ijbiomac.2022.12.243 36581023
    [Google Scholar]
  98. Rajabi A. Nejati M. Homayoonfal M. Arj A. Razavi Z.S. Ostadian A. Mohammadzadeh B. Vosough M. Karimi M. Rahimian N. Hamblin M.R. Anoushirvani A.A. Mirzaei H. Doxorubicin-loaded zymosan nanoparticles: Synergistic cytotoxicity and modulation of apoptosis and Wnt/β-catenin signaling pathway in C26 colorectal cancer cells. Int. J. Biol. Macromol. 2024 260 Pt 2 128949 10.1016/j.ijbiomac.2023.128949 38143055
    [Google Scholar]
  99. Zhao B. Du J. Zhang Y. Gu Z. Li Z. Cheng L. Li C. Hong Y. Polysaccharide-coated porous starch-based oral car-rier for paclitaxel: Adsorption and sustained release in colon. Carbohydr. Polym. 2022 291 119571 10.1016/j.carbpol.2022.119571 35698392
    [Google Scholar]
  100. Kianpour M. Huang C.W. Vejvisithsakul P.P. Wang J.Y. Li C.F. Shiao M.S. Pan C.T. Shiue Y.L. Ap-tamer/doxorubicin-conjugated nanoparticles target membra-nous CEMIP2 in colorectal cancer. Int. J. Biol. Macromol. 2023 245 125510 10.1016/j.ijbiomac.2023.125510 37353120
    [Google Scholar]
  101. Shen L. Zhou P. Wang Y.M. Zhu Z. Yuan Q. Cao S. Li J. Supramolecular nanoparticles based on elastin-like pep-tides modified capsid protein as drug delivery platform with enhanced cancer chemotherapy efficacy. Int. J. Biol. Macromol. 2024 256 Pt 2 128107 10.1016/j.ijbiomac.2023.128107 38007030
    [Google Scholar]
  102. Iranpour S. Bahrami A.R. Dayyani M. Saljooghi A.S. Matin M.M. A potent multifunctional ZIF-8 nanoplatform developed for colorectal cancer therapy by triple-delivery of chemo/radio/targeted therapy agents. J. Mater. Chem. B Mater. Biol. Med. 2024 12 4 1096 1114 10.1039/D3TB02571C 38229578
    [Google Scholar]
  103. Hasannia M. Lamei K. Abnous K. Taghdisi S.M. Nekooei S. Nekooei N. Ramezani M. Alibolandi M. Tar-geted poly(L-glutamic acid)-based hybrid peptosomes co-loaded with doxorubicin and USPIONs as a theranostic plat-form for metastatic breast cancer. Nanomedicine 2023 48 102645 10.1016/j.nano.2022.102645 36549556
    [Google Scholar]
  104. Zheng G. Zheng M. Yang B. Fu H. Li Y. Improving breast cancer therapy using doxorubicin loaded solid lipid nanoparticles: Synthesis of a novel arginine-glycine-aspartic tripeptide conjugated, pH sensitive lipid and evaluation of the nanomedicine in vitro and in vivo. Biomed. Pharmacother. 2019 116 109006 10.1016/j.biopha.2019.109006 31152925
    [Google Scholar]
  105. Ghosh S. Lalani R. Maiti K. Banerjee S. Bhatt H. Bob-de Y.S. Patel V. Biswas S. Bhowmick S. Misra A. Syn-ergistic co-loading of vincristine improved chemotherapeutic potential of pegylated liposomal doxorubicin against triple negative breast cancer and non-small cell lung cancer. Nanomedicine 2021 31 102320 10.1016/j.nano.2020.102320 33075540
    [Google Scholar]
  106. Yu J. Xu J. Jiang R. Yuan Q. Ding Y. Ren J. Jiang D. Wang Y. Wang L. Chen P. Zhang L. Versatile chondroitin sulfate-based nanoplatform for chemo-photodynamic therapy against triple-negative breast cancer. Int. J. Biol. Macromol. 2024 265 Pt 1 130709 10.1016/j.ijbiomac.2024.130709 38462120
    [Google Scholar]
  107. Zhang B. Zhang Y. Dang W. Xing B. Yu C. Guo P. Pi J. Deng X. Qi D. Liu Z. The anti-tumor and renoprotection study of E-[c(RGDfK)2]/folic acid co-modified nanostruc-tured lipid carrier loaded with doxorubicin hydrochlo-ride/salvianolic acid A. J. Nanobiotechnology 2022 20 1 425 10.1186/s12951‑022‑01628‑x 36153589
    [Google Scholar]
  108. Comba A. Faisal S.M. Dunn P.J. Argento A.E. Hollon T.C. Al-Holou W.N. Varela M.L. Zamler D.B. Quass G.L. Apostolides P.F. Abel C.I.I. Brown C.E. Kish P.E. Kahana A. Kleer C.G. Motsch S. Castro M.G. Low-enstein P.R. Spatiotemporal analysis of glioma heterogeneity reveals COL1A1 as an actionable target to disrupt tumor pro-gression. Nat. Commun. 2022 13 1 3606 10.1038/s41467‑022‑31340‑1 35750880
    [Google Scholar]
  109. Tarantino P. Carmagnani Pestana R. Corti C. Modi S. Bardia A. Tolaney S.M. Cortes J. Soria J.C. Curigliano G. Antibody–drug conjugates: Smart chemotherapy delivery across tumor histologies. CA Cancer J. Clin. 2022 72 2 165 182 10.3322/caac.21705 34767258
    [Google Scholar]
  110. Liu Y. Yang G. Jin S. Xu L. Zhao C.X. Development of high‐drug‐loading nanoparticles. ChemPlusChem 2020 85 9 2143 2157 10.1002/cplu.202000496 32864902
    [Google Scholar]
  111. Loo Y.S. Zahid N.I. Madheswaran T. Mat Azmi I.D. Recent advances in the development of multifunctional lipid-based nanoparticles for co-delivery, combination treatment strategies, and theranostics in breast and lung cancer. J. Drug Deliv. Sci. Technol. 2022 71 103300 10.1016/j.jddst.2022.103300
    [Google Scholar]
  112. Song S. Shim M.K. Yang S. Lee J. Yun W.S. Cho H. Moon Y. Min J.Y. Han E.H. Yoon H.Y. Kim K. All-in-one glycol chitosan nanoparticles for co-delivery of doxoru-bicin and anti-PD-L1 peptide in cancer immunotherapy. Bioact. Mater. 2023 28 358 375 10.1016/j.bioactmat.2023.05.016 37334068
    [Google Scholar]
  113. Khodarahmi M. Abbasi H. Kouchak M. Mahdavinia M. Handali S. Rahbar N. Nanoencapsulation of aptamer-functionalized 5-Fluorouracil liposomes using algi-nate/chitosan complex as a novel targeting strategy for colon-specific drug delivery. J. Drug Deliv. Sci. Technol. 2022 71 103299 10.1016/j.jddst.2022.103299
    [Google Scholar]
  114. dos Santos A.M. Carvalho S.G. Meneguin A.B. Sábio R.M. Gremião M.P.D. Chorilli M. Oral delivery of mi-cro/nanoparticulate systems based on natural polysaccharides for intestinal diseases therapy: Challenges, advances and fu-ture perspectives. J. Control. Release 2021 334 353 366 10.1016/j.jconrel.2021.04.026 33901582
    [Google Scholar]
  115. Dehghani S. Alibolandi M. Tehranizadeh Z.A. Oskuee R.K. Nosrati R. Soltani F. Ramezani M. Self-assembly of an aptamer-decorated chimeric peptide nanocarrier for target-ed cancer gene delivery. Colloids Surf. B Biointerfaces 2021 208 112047 10.1016/j.colsurfb.2021.112047 34418722
    [Google Scholar]
  116. Agazzi M.L. Herrera S.E. Cortez M.L. Marmisollé W.A. Azzaroni O. Self-assembled peptide dendrigraft supraparti-cles with potential application in pH/enzyme-triggered multi-stage drug release. Colloids Surf. B Biointerfaces 2020 190 110895 10.1016/j.colsurfb.2020.110895 32145605
    [Google Scholar]
  117. Pai F.T. Lin W.J. Synergistic cytotoxicity of irinotecan com-bined with polysaccharide-based nanoparticles for colorectal carcinoma. Biomater. Adv. 2023 153 213577 10.1016/j.bioadv.2023.213577 37572599
    [Google Scholar]
  118. Tiwari A. Gajbhiye V. Jain A. Verma A. Shaikh A. Salve R. Jain S.K. Hyaluronic acid functionalized liposomes embedded in biodegradable beads for duo drugs delivery to oxaliplatin-resistant colon cancer. J. Drug Deliv. Sci. Technol. 2022 77 103891 10.1016/j.jddst.2022.103891
    [Google Scholar]
  119. Fang X. Cao J. Shen A. Advances in anti-breast cancer drugs and the application of nano-drug delivery systems in breast cancer therapy. J. Drug Deliv. Sci. Technol. 2020 57 101662 10.1016/j.jddst.2020.101662
    [Google Scholar]
  120. Jia Y. Chen S. Wang C. Sun T. Yang L. Hyaluronic acid-based nano drug delivery systems for breast cancer treatment: Recent advances. Front. Bioeng. Biotechnol. 2022 10 990145 10.3389/fbioe.2022.990145 36091467
    [Google Scholar]
  121. Jansson M. Lindberg J. Rask G. Svensson J. Billing O. Nazemroaya A. Berglund A. Wärnberg F. Sund M. Prog-nostic value of stromal type IV collagen expression in small invasive breast cancers. Front. Mol. Biosci. 2022 9 904526 10.3389/fmolb.2022.904526 35693557
    [Google Scholar]
  122. Lindgren M. Jansson M. Tavelin B. Dirix L. Vermeulen P. Nyström H. Type IV collagen as a potential biomarker of metastatic breast cancer. Clin. Exp. Metastasis 2021 38 2 175 185 10.1007/s10585‑021‑10082‑2 33655422
    [Google Scholar]
  123. Ikeda-Imafuku M. Gao Y. Shaha S. Wang L.L.W. Park K.S. Nakajima M. Adebowale O. Mitragotri S. Extracellu-lar matrix degrading enzyme with stroma-targeting peptides enhance the penetration of liposomes into tumors. J. Control. Release 2022 352 1093 1103 10.1016/j.jconrel.2022.11.007 36351520
    [Google Scholar]
  124. Chaudhari R. Patel V. Kumar A. Cutting-edge approaches for targeted drug delivery in breast cancer: Beyond conven-tional therapies. Nanoscale Adv. 2024 6 9 2270 2286 10.1039/D4NA00086B 38694472
    [Google Scholar]
  125. Chen H. Fan X. Zhao Y. Zhi D. Cui S. Zhang E. Lan H. Du J. Zhang Z. Zhang S. Zhen Y. Stimuli-responsive polysaccharide enveloped liposome for targeting and penetrat-ing delivery of survivin-shRNA into breast tumor. ACS Appl. Mater. Interfaces 2020 12 19 22074 22087 10.1021/acsami.9b22440 32083833
    [Google Scholar]
  126. Chen Y. Wang S. Hu Q. Zhou L. Self-emulsifying system co-loaded with paclitaxel and coix seed oil deeply penetrated to enhance efficacy in cervical cancer. Curr. Drug Deliv. 2023 20 7 919 926 10.2174/1567201819666220628094239 35762559
    [Google Scholar]
  127. Zhou Y. Wang L. Chen L. Wu W. Yang Z. Wang Y. Wang A. Jiang S. Qin X. Ye Z. Hu Z. Wang Z. Glio-blastoma cell-derived exosomes functionalized with peptides as efficient nanocarriers for synergistic chemotherapy of glio-blastoma with improved biosafety. Nano Res. 2023 16 12 13283 13293 10.1007/s12274‑023‑5921‑6
    [Google Scholar]
  128. Gadade D.D. Jain N. Sareen R. Giram P.S. Modi A. Strategies for cancer targeting: Novel drug delivery systems opportunities and future challenges. Targeted Cancer Therapy in Biomedical Engineering 2023 1 42 10.1007/978‑981‑19‑9786‑0_1
    [Google Scholar]
  129. Jiang Y. Yan C. Li M. Chen S. Chen Z. Yang L. Luo K. Delivery of natural products via polysaccharide-based nanocarriers for cancer therapy: A review on recent advances and future challenges. Int. J. Biol. Macromol. 2024 278 Pt 4 135072 10.1016/j.ijbiomac.2024.135072 39191341
    [Google Scholar]
  130. Bhatt P. Kumar V. Subramaniyan V. Nagarajan K. Sekar M. Chinni S.V. Ramachawolran G. Plasma modification techniques for natural polymer-based drug delivery systems. Pharmaceutics 2023 15 8 2066 10.3390/pharmaceutics15082066 37631280
    [Google Scholar]
  131. Wu D. Li M. Current state and challenges of physiologically based biopharmaceutics modeling (PBBM) in oral drug prod-uct development. Pharm. Res. 2023 40 2 321 336 10.1007/s11095‑022‑03373‑0 36076007
    [Google Scholar]
  132. Yuan D. Guo Y. Pu F. Yang C. Xiao X. Du H. He J. Lu S. Opportunities and challenges in enhancing the bioavail-ability and bioactivity of dietary flavonoids: A novel delivery system perspective. Food Chem. 2024 430 137115 10.1016/j.foodchem.2023.137115 37566979
    [Google Scholar]
  133. Lee J. Choi M.K. Song I.S. Recent advances in doxorubi-cin formulation to enhance pharmacokinetics and tumor tar-geting. Pharmaceuticals (Basel) 2023 16 6 802 10.3390/ph16060802 37375753
    [Google Scholar]
  134. Elumalai K. Srinivasan S. Shanmugam A. Review of the efficacy of nanoparticle-based drug delivery systems for can-cer treatment. Biomed Technol 2024 5 109 122 10.1016/j.bmt.2023.09.001
    [Google Scholar]
  135. Pires P.C. Mascarenhas-Melo F. Pedrosa K. Lopes D. Lopes J. Macário-Soares A. Peixoto D. Giram P.S. Veiga F. Paiva-Santos A.C. Polymer-based biomaterials for phar-maceutical and biomedical applications: A focus on topical drug administration. Eur. Polym. J. 2023 187 111868 10.1016/j.eurpolymj.2023.111868
    [Google Scholar]
  136. Grewal A.K. Salar R.K. Chitosan nanoparticle delivery sys-tems: An effective approach to enhancing efficacy and safety of anticancer drugs. Nano TransMed 2024 3 100040 10.1016/j.ntm.2024.100040
    [Google Scholar]
  137. Kandasamy G. Maity D. Current advancements in self-assembling nanocarriers-based siRNA delivery for cancer therapy. Colloids Surf. B Biointerfaces 2023 221 113002 10.1016/j.colsurfb.2022.113002 36370645
    [Google Scholar]
  138. Molinar C. Tannous M. Meloni D. Cavalli R. Scomparin A. Current status and trends in nucleic acids for cancer thera-py: A focus on polysaccharide‐based nanomedicines. Macromol. Biosci. 2023 23 9 2300102 10.1002/mabi.202300102 37212473
    [Google Scholar]
  139. Miyazaki M. Yuba E. Hayashi H. Harada A. Kono K. Development of pH-responsive hyaluronic acid-based antigen carriers for induction of antigen-specific cellular immune re-sponses. ACS Biomater. Sci. Eng. 2019 5 11 5790 5797 10.1021/acsbiomaterials.9b01278 33405671
    [Google Scholar]
  140. Gagneja S. Capalash N. Sharma P. Hyaluronic acid as a tumor progression agent and a potential chemotherapeutic bi-omolecule against cancer: A review on its dual role. Int. J. Biol. Macromol. 2024 275 Pt 2 133744 10.1016/j.ijbiomac.2024.133744 38986990
    [Google Scholar]
  141. Raza F. Evans L. Motallebi M. Zafar H. Pereira-Silva M. Saleem K. Peixoto D. Rahdar A. Sharifi E. Veiga F. Hoskins C. Paiva-Santos A.C. Liposome-based diagnostic and therapeutic applications for pancreatic cancer. Acta Biomater. 2023 157 1 23 10.1016/j.actbio.2022.12.013 36521673
    [Google Scholar]
  142. Shukla R. Singh A. Singh K.K. Vincristine-based nanoformulations: A preclinical and clinical studies overview. Drug Deliv. Transl. Res. 2024 14 1 1 16 10.1007/s13346‑023‑01389‑6 37552393
    [Google Scholar]
  143. Lopes J. Lopes D. Macário-Soares A. Ferreira-Faria I. Peixoto D. Motallebi M. Mohammad I.S. Giram P.S. Pires P.C. Raza F. Cell membrane-coated biomaterials for bone cancer-targeted diagnosis and therapy: A critical update on osteosarcoma applications. Mater Chem Horizons 2023 2 1 65 79 10.22128/mch.2022.615.1032
    [Google Scholar]
  144. Wang R. Li Y. Li Z. Yao H. Zhai Z. Hyaluronic acid filler‐induced vascular occlusion: Three case reports and overview of prevention and treatment. J. Cosmet. Dermatol. 2024 23 4 1217 1223 10.1111/jocd.16147 38131127
    [Google Scholar]
  145. Branco F. Cunha J. Mendes M. Vitorino C. Sousa J.J. Peptide-hitchhiking for the development of nanosystems in glioblastoma. ACS Nano 2024 18 26 16359 16394 10.1021/acsnano.4c01790 38861272
    [Google Scholar]
  146. Cavallaro P.A. De Santo M. Belsito E.L. Longobucco C. Curcio M. Morelli C. Pasqua L. Leggio A. Peptides target-ing HER2-positive breast cancer cells and applications in tu-mor imaging and delivery of chemotherapeutics. Nanomaterials (Basel) 2023 13 17 2476 10.3390/nano13172476 37686984
    [Google Scholar]
  147. Kulkarni D. Damiri F. Rojekar S. Zehravi M. Ramproshad S. Dhoke D. Musale S. Mulani A.A. Modak P. Paradhi R. Vitore J. Rahman M.H. Berrada M. Giram P.S. Cavalu S. Recent advancements in mi-croneedle technology for multifaceted biomedical applica-tions. Pharmaceutics 2022 14 5 1097 10.3390/pharmaceutics14051097 35631683
    [Google Scholar]
  148. Jin K.T. Lu Z.B. Chen J.Y. Liu Y.Y. Lan H.R. Dong H.Y. Yang F. Zhao Y.Y. Chen X.Y. Recent trends in nanocarrier‐based targeted chemotherapy: Selective delivery of anticancer drugs for effective lung, colon, cervical, and breast cancer treatment. J. Nanomater. 2020 2020 1 1 14 10.1155/2020/9184284
    [Google Scholar]
  149. Vaidya F.U. Sufiyan Chhipa A. Mishra V. Gupta V.K. Rawat S.G. Kumar A. Pathak C. Molecular and cellular paradigms of multidrug resistance in cancer. Cancer Rep. 2022 5 12 e1291 10.1002/cnr2.1291 33052041
    [Google Scholar]
  150. Anand U. Dey A. Chandel A.K.S. Sanyal R. Mishra A. Pandey D.K. De Falco V. Upadhyay A. Kandimalla R. Chaudhary A. Dhanjal J.K. Dewanjee S. Vallamkondu J. Pérez de la Lastra J.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 2023 10 4 1367 1401 10.1016/j.gendis.2022.02.007 37397557
    [Google Scholar]
  151. Wang Y. Zhang T. Huang Y. Li W. Zhao J. Yang Y. Li C. Wang L. Bi N. Real-world safety and efficacy of con-solidation durvalumab after chemoradiation therapy for stage III non-small cell lung cancer: A systematic review and meta-analysis. Int. J. Radiat. Oncol. Biol. Phys. 2022 112 5 1154 1164 10.1016/j.ijrobp.2021.12.150 34963558
    [Google Scholar]
  152. Cao J. Huang D. Peppas N.A. Advanced engineered nano-particulate platforms to address key biological barriers for de-livering chemotherapeutic agents to target sites. Adv. Drug Deliv. Rev. 2020 167 170 188 10.1016/j.addr.2020.06.030 32622022
    [Google Scholar]
  153. Liang P. Ballou B. Lv X. Si W. Bruchez M.P. Huang W. Dong X. Monotherapy and combination therapy using anti‐angiogenic nanoagents to fight cancer. Adv. Mater. 2021 33 15 2005155 10.1002/adma.202005155 33684242
    [Google Scholar]
  154. Pasarin D. Ghizdareanu A.I. Enascuta C.E. Matei C.B. Bilbie C. Paraschiv-Palada L. Veres P.A. Coating materials to increase the stability of liposomes. Polymers (Basel) 2023 15 3 782 10.3390/polym15030782 36772080
    [Google Scholar]
  155. Makwana V. Karanjia J. Haselhorst T. Anoopkumar-Dukie S. Rudrawar S. Liposomal doxorubicin as targeted delivery platform: Current trends in surface functionalization. Int. J. Pharm. 2021 593 120117 10.1016/j.ijpharm.2020.120117 33259901
    [Google Scholar]
  156. Imam S.S. Alshehri S. Altamimi M.A. Almalki R.K.H. Hussain A. Bukhari S.I. Mahdi W.A. Qamar W. Formula-tion of chitosan-coated apigenin bilosomes: In vitro character-ization, antimicrobial and cytotoxicity assessment. Polymers (Basel) 2022 14 5 921 10.3390/polym14050921 35267744
    [Google Scholar]
  157. Haridas V. Tailoring of peptide vesicles: A bottom-up chemi-cal approach. Acc. Chem. Res. 2021 54 8 1934 1949 10.1021/acs.accounts.0c00690 33823579
    [Google Scholar]
  158. Ghafoor M.H. Song B.L. Zhou L. Qiao Z.Y. Wang H. Self-assembly of peptides as an alluring approach toward cancer treatment and imaging. ACS Biomater. Sci. Eng. 2024 10 5 2841 2862 10.1021/acsbiomaterials.4c00491 38644736
    [Google Scholar]
  159. Samec T. Boulos J. Gilmore S. Hazelton A. Alexander-Bryant A. Peptide-based delivery of therapeutics in cancer treatment. Mater. Today Bio 2022 14 100248 10.1016/j.mtbio.2022.100248 35434595
    [Google Scholar]
  160. Najafi M. Majidpoor J. Toolee H. Mortezaee K. The cur-rent knowledge concerning solid cancer and therapy. J. Biochem. Mol. Toxicol. 2021 35 11 e22900 10.1002/jbt.22900 34462987
    [Google Scholar]
  161. Morel D. Jeffery D. Aspeslagh S. Almouzni G. Postel-Vinay S. Combining epigenetic drugs with other therapies for solid tumours — Past lessons and future promise. Nat. Rev. Clin. Oncol. 2020 17 2 91 107 10.1038/s41571‑019‑0267‑4 31570827
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018349688241008220007
Loading
/content/journals/cdd/10.2174/0115672018349688241008220007
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: breast carcinoma ; chemotherapy ; colon carcinoma ; Polysaccharide ; liposome ; peptide
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test