Skip to content
2000
image of Drug-Loaded Hydrogel Microneedles for Sustainable Transdermal Delivery of Macromolecular Proteins

Abstract

Introduction

Poly(methyl vinyl ether co-maleic acid) (PMVE/MA) hydrogel microneedles (HMN) are investigated for transdermal delivery of macromolecular drugs owing to their biocompatibility and super-swelling properties. However, the drug delivery efficacy reduces with increasing molecular weight due to the entrapment within the HMN matrices. Furthermore, integrating external drug reservoirs extends the drug diffusion path and reduces the efficiency of drug permeation.

Methods

A direct drug loading approach in the HMN matrix was introduced in this work following a pH modification step. The effect of pH modification on the physicochemical properties of HMN was studied. Then, bovine serum albumin (BSA), a model protein, was loaded into the pH-modified HMN, and the morphological changes in HMN and protein stability were also assessed. Finally, the efficacy of BSA-loaded HMN in the transdermal delivery was evaluated .

Results

A significant increase in swelling was recorded following the pH modification of HMN (p < 0.001). The structure of pH-modified hydrogel was highly porous, and ATR-FTIR spectra indicated a shift in the carboxylic peak. The secondary structure of BSA loaded in the pH-modified HMN was also preserved. The BSA-loaded HMN mediated a sustained drug release with a cumulative release of 64.70% (3.88 mg) in 24 h.

Conclusion

Hence, the model drug-incorporated PMVE/MA HMN system shows potential for sustainable transdermal delivery of proteins.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018346286241121052105
2025-01-15
2025-05-29
Loading full text...

Full text loading...

References

  1. Tan M.L. Choong P.F.M. Dass C.R. Recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery. Peptides 2010 31 1 184 193 10.1016/j.peptides.2009.10.002 19819278
    [Google Scholar]
  2. Mitragotri S. Burke P.A. Langer R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat. Rev. Drug Discov. 2014 13 9 655 672 10.1038/nrd4363 25103255
    [Google Scholar]
  3. Lakshmi P. Prasanthi D. Veeresh B. NON INVASIVE DELIVERY OF PROTEIN AND PEPTIDE DRUGS: A REVIEW. Asian J. Pharm. Clin. Res. 2017 10 8 25 33 10.22159/ajpcr.2017.v10i8.18274
    [Google Scholar]
  4. Agrahari V. Agrahari V. Mitra A.K. Nanocarrier fabrication and macromolecule drug delivery: challenges and opportunities. Ther. Deliv. 2016 7 4 257 278 10.4155/tde‑2015‑0012 27010987
    [Google Scholar]
  5. Peña-Juárez M.C. Guadarrama-Escobar O.R. Escobar-Chávez J.J. J. Pharm. Innov. 2021 ••• 1 14
    [Google Scholar]
  6. Li J.Y. Feng Y.H. He Y.T. Hu L.F. Liang L. Zhao Z.Q. Chen B.Z. Guo X.D. Thermosensitive hydrogel microneedles for controlled transdermal drug delivery. Acta Biomater. 2022 153 308 319 10.1016/j.actbio.2022.08.061 36055607
    [Google Scholar]
  7. Donnelly R.F. Singh T.R.R. Garland M.J. Migalska K. Majithiya R. McCrudden C.M. Kole P.L. Mahmood T.M.T. McCarthy H.O. Woolfson A.D. Hydrogel‐Forming Microneedle Arrays for Enhanced Transdermal Drug Delivery. Adv. Funct. Mater. 2012 22 23 4879 4890 10.1002/adfm.201200864 23606824
    [Google Scholar]
  8. Donnelly R.F. McCrudden M.T.C. Zaid Alkilani A. Larrañeta E. McAlister E. Courtenay A.J. Kearney M.C. Singh T.R.R. McCarthy H.O. Kett V.L. Caffarel-Salvador E. Al-Zahrani S. Woolfson A.D. Hydrogel-forming microneedles prepared from “super swelling” polymers combined with lyophilised wafers for transdermal drug delivery. PLoS One 2014 9 10 e111547 10.1371/journal.pone.0111547 25360806
    [Google Scholar]
  9. Courtenay A.J. McCrudden M.T.C. McAvoy K.J. McCarthy H.O. Donnelly R.F. Microneedle-Mediated Transdermal Delivery of Bevacizumab. Mol. Pharm. 2018 15 8 3545 3556 10.1021/acs.molpharmaceut.8b00544 29996645
    [Google Scholar]
  10. Turner J.G. White L.R. Estrela P. Leese H.S. Hydrogel‐Forming Microneedles: Current Advancements and Future Trends. Macromol. Biosci. 2021 21 2 2000307 10.1002/mabi.202000307
    [Google Scholar]
  11. Anjani Q.K. Permana A.D. Cárcamo-Martínez Á. Domínguez-Robles J. Tekko I.A. Larrañeta E. Vora L.K. Ramadon D. Donnelly R.F. Versatility of hydrogel-forming microneedles in in vitro transdermal delivery of tuberculosis drugs. Eur. J. Pharm. Biopharm. 2021 158 294 312 10.1016/j.ejpb.2020.12.003 33309844
    [Google Scholar]
  12. Sabri A.H.B. Anjani Q.K. Utomo E. Ripolin A. Donnelly R.F. Development and characterization of a dry reservoir-hydrogel-forming microneedles composite for minimally invasive delivery of cefazolin. Int. J. Pharm. 2022 617 121593 10.1016/j.ijpharm.2022.121593 35182702
    [Google Scholar]
  13. Davoodi P. Lee L.Y. Xu Q. Sunil V. Sun Y. Soh S. Wang C.H. Drug delivery systems for programmed and on-demand release. Adv. Drug Deliv. Rev. 2018 132 104 138 10.1016/j.addr.2018.07.002 30415656
    [Google Scholar]
  14. Degerstedt O. Gråsjö J. Norberg A. Sjögren E. Hansson P. Lennernäs H. Drug diffusion in biomimetic hydrogels: importance for drug transport and delivery in non-vascular tumor tissue. Eur. J. Pharm. Sci. 2022 172 106150 10.1016/j.ejps.2022.106150 35231602
    [Google Scholar]
  15. Hutton A.R.J. McCrudden M.T.C. Larrañeta E. Donnelly R.F. Influence of molecular weight on transdermal delivery of model macromolecules using hydrogel-forming microneedles: potential to enhance the administration of novel low molecular weight biotherapeutics. J. Mater. Chem. B Mater. Biol. Med. 2020 8 19 4202 4209 10.1039/D0TB00021C 32292995
    [Google Scholar]
  16. Bediako E.G. Nyankson E. Dodoo-Arhin D. Agyei-Tuffour B. Łukowiec D. Tomiczek B. Yaya A. Efavi J.K. Modified halloysite nanoclay as a vehicle for sustained drug delivery. Heliyon 2018 4 7 e00689 10.1016/j.heliyon.2018.e00689 30014048
    [Google Scholar]
  17. Nalamachu S. Gudin J. Characteristics of Analgesic Patch Formulations. J. Pain Res. 2020 13 2343 2354 10.2147/JPR.S270169 33061549
    [Google Scholar]
  18. Pastore M.N. Kalia Y.N. Horstmann M. Roberts M.S. Transdermal patches: history, development and pharmacology. Br. J. Pharmacol. 2015 172 9 2179 2209 10.1111/bph.13059 25560046
    [Google Scholar]
  19. Migdadi E.M. Courtenay A.J. Tekko I.A. McCrudden M.T.C. Kearney M.C. McAlister E. McCarthy H.O. Donnelly R.F. Hydrogel-forming microneedles enhance transdermal delivery of metformin hydrochloride. J. Control. Release 2018 285 142 151 10.1016/j.jconrel.2018.07.009 29990526
    [Google Scholar]
  20. Zeng Z. Jiang G. Liu T. Song G. Sun Y. Zhang X. Jing Y. Feng M. Shi Y. Fabrication of gelatin methacryloyl hydrogel microneedles for transdermal delivery of metformin in diabetic rats. Biodes. Manuf. 2021 4 4 902 911 10.1007/s42242‑021‑00140‑9
    [Google Scholar]
  21. Aung N.N. Ngawhirunpat T. Rojanarata T. Patrojanasophon P. Pamornpathomkul B. Opanasopit P. Fabrication, characterization and comparison of α-arbutin loaded dissolving and hydrogel forming microneedles. Int. J. Pharm. 2020 586 119508 10.1016/j.ijpharm.2020.119508 32512227
    [Google Scholar]
  22. Chandran R. Mohd Tohit E.R. Stanslas J. Tuan Mahmood T.M. Salim N. Factors influencing the swelling behaviour of polymethyl vinyl ether-co-maleic acid hydrogels crosslinked by polyethylene glycol. J. Drug Deliv. Sci. Technol. 2022 68 103080 10.1016/j.jddst.2021.103080
    [Google Scholar]
  23. Raj Singh T.R. Garland M.J. Migalska K. Salvador E.C. Shaikh R. McCarthy H.O. David Woolfson A. Donnelly R.F. Influence of a pore‐forming agent on swelling, network parameters, and permeability of poly(ethylene glycol)‐crosslinked poly(methyl vinyl ether‐ co ‐maleic acid) hydrogels: Application in transdermal delivery systems. J. Appl. Polym. Sci. 2012 125 4 2680 2694 10.1002/app.36524
    [Google Scholar]
  24. Tee Y.B. Tee L.T. Daengprok W. Talib R.A. Chemical, Physical, and Barrier Properties of Edible Film from Flaxseed Mucilage. BioResources 2017 12 3 6656 6664 10.15376/biores.12.3.6656‑6664
    [Google Scholar]
  25. Akowuah G.A. May L.L.Y. Chin J.H. Toxicological evaluation of Vernonia amygdalina methanol leave extract in rats. Orient. Pharm. Exp. Med. 2015 15 4 365 369 10.1007/s13596‑015‑0194‑6
    [Google Scholar]
  26. Singh T.R.R. McCarron P.A. Woolfson A.D. Donnelly R.F. Eur. Polym. J. 2009 45 1239 1249 10.1016/j.eurpolymj.2008.12.019
    [Google Scholar]
  27. Pandey M. Choudhury H. S. K. D/O Segar Singh, N. Chetty Annan, S. K. Bhattamisra, B. Gorain, M. C. I. Mohd Amin. Molecules 2021 26 2704 10.3390/molecules26092704 34062995
    [Google Scholar]
  28. Larrañeta E. Moore J. Vicente-Pérez E.M. González-Vázquez P. Lutton R. Woolfson A.D. Donnelly R.F. A proposed model membrane and test method for microneedle insertion studies. Int. J. Pharm. 2014 472 1-2 65 73 10.1016/j.ijpharm.2014.05.042 24877757
    [Google Scholar]
  29. Chandran R. Mohd Tohit E.R. Stanslas J. Salim N. Tuan Mahmood T.M. Investigation and Optimization of Hydrogel Microneedles for Transdermal Delivery of Caffeine. Tissue Eng. Part C Methods 2022 28 10 545 556 10.1089/ten.tec.2022.0045 35485888
    [Google Scholar]
  30. Altuntaş E. Tekko I.A. Vora L.K. Kumar N. Brodsky R. Chevallier O. McAlister E. Kurnia Anjani Q. McCarthy H.O. Donnelly R.F. Nestorone nanosuspension-loaded dissolving microneedles array patch: A promising novel approach for “on-demand” hormonal female-controlled peritcoital contraception. Int. J. Pharm. 2022 614 121422 10.1016/j.ijpharm.2021.121422 34958899
    [Google Scholar]
  31. Kathuria H. Kang K. Cai J. Kang L. Rapid microneedle fabrication by heating and photolithography. Int. J. Pharm. 2020 575 118992 10.1016/j.ijpharm.2019.118992 31884060
    [Google Scholar]
  32. Chen X. Yu H. Wang L. Wang N. Zhang Q. Zhou W. Uddin M.A. Preparation of phenylboronic acid‐based hydrogel microneedle patches for glucose‐dependent insulin delivery. J. Appl. Polym. Sci. 2021 138 5 49772 10.1002/app.49772
    [Google Scholar]
  33. Klimek K. Benko A. Pałka K. Ludwiczuk A. Ginalska G. Ion-exchanging dialysis as an effective method for protein entrapment in curdlan hydrogel. Mater. Sci. Eng. C 2019 105 110025 10.1016/j.msec.2019.110025
    [Google Scholar]
  34. Vora L.K. Courtenay A.J. Tekko I.A. Larrañeta E. Donnelly R.F. Pullulan-based dissolving microneedle arrays for enhanced transdermal delivery of small and large biomolecules. Int. J. Biol. Macromol. 2020 146 290 298 10.1016/j.ijbiomac.2019.12.184 31883883
    [Google Scholar]
  35. Ishak S.N.H. Masomian M. Kamarudin N.H.A. Ali M.S.M. Leow T.C. Rahman R.N.Z.R.A. Changes of Thermostability, Organic Solvent, and pH Stability in Geobacillus zalihae HT1 and Its Mutant by Calcium Ion. Int. J. Mol. Sci. 2019 20 10 2561 10.3390/ijms20102561 31137725
    [Google Scholar]
  36. Ramöller I. McAlister E. Bogan A. Cordeiro A. Donnelly R. Novel Design Approaches in the Fabrication of Polymeric Microarray Patches via Micromoulding. Micromachines (Basel) 2020 11 6 554 10.3390/mi11060554 32486123
    [Google Scholar]
  37. Summerfield A. Meurens F. Ricklin M.E. The immunology of the porcine skin and its value as a model for human skin. Mol. Immunol. 2015 66 1 14 21 10.1016/j.molimm.2014.10.023 25466611
    [Google Scholar]
  38. Van Bocxlaer K. McArthur K.N. Harris A. Alavijeh M. Braillard S. Mowbray C.E. Croft S.L. Film-Forming Systems for the Delivery of DNDI-0690 to Treat Cutaneous Leishmaniasis. Pharmaceutics 2021 13 4 516 10.3390/pharmaceutics13040516 33918099
    [Google Scholar]
  39. da Silva Meira A. Battistel A.P. Teixeira H.F. Volpato N.M. J. Drug Deliv. Sci. Technol. 2020 60 101926 10.1016/j.jddst.2020.101926
    [Google Scholar]
  40. Vatmanidou M.A. Stathopoulou K. Gikas E. Aligiannis N. Dallas P.P. Rekkas D.M. Effect of triethanolamine as counter ion on the transdermal permeation of candesartan. J. Drug Deliv. Sci. Technol. 2022 67 102869 10.1016/j.jddst.2021.102869
    [Google Scholar]
  41. Abdallah M.H. Lila A.S.A. Unissa R. Elsewedy H.S. Elghamry H.A. Soliman M.S. Brucine-Loaded Ethosomal Gel: Design, Optimization, and Anti-inflammatory Activity. AAPS PharmSciTech 2021 22 8 269 10.1208/s12249‑021‑02113‑8 34762193
    [Google Scholar]
  42. Hasan M. Khatun A. Kogure K. Iontophoresis of Biological Macromolecular Drugs. Pharmaceutics 2022 14 3 525 10.3390/pharmaceutics14030525 35335900
    [Google Scholar]
  43. Don T.M. Chen M. Lee I.C. Huang Y.C. Preparation and characterization of fast dissolving ulvan microneedles for transdermal drug delivery system. Int. J. Biol. Macromol. 2022 207 90 99 10.1016/j.ijbiomac.2022.02.127 35218808
    [Google Scholar]
  44. Rahbari R. Ichim I. Bamsey R. Burridge J. Guy O.J. Bolodeoku J. Graz M. Characterisation of Drug Delivery Efficacy Using Microstructure-Assisted Application of a Range of APIs. Pharmaceutics 2020 12 12 1213 10.3390/pharmaceutics12121213 33333795
    [Google Scholar]
  45. Musa S.H. Basri M. Fard Masoumi H.R. Shamsudin N. Salim N. Enhancement of physicochemical properties of nanocolloidal carrier loaded with cyclosporine for topical treatment of psoriasis: in vitro diffusion and in vivo hydrating action. Int. J. Nanomedicine 2017 12 2427 2441 10.2147/IJN.S125302 28405165
    [Google Scholar]
  46. Gulen B. Demircivi P. Synthesis and characterization of montmorillonite/ciprofloxacin/TiO2 porous structure for controlled drug release of ciprofloxacin tablet with oral administration. Appl. Clay Sci. 2020 197 105768 10.1016/j.clay.2020.105768
    [Google Scholar]
  47. Michailidou G. Christodoulou E. Nanaki S. Barmpalexis P. Karavas E. Vergkizi-Nikolakaki S. Bikiaris D.N. Super-hydrophilic and high strength polymeric foam dressings of modified chitosan blends for topical wound delivery of chloramphenicol. Carbohydr. Polym. 2019 208 1 13 10.1016/j.carbpol.2018.12.050 30658779
    [Google Scholar]
  48. Urbano-Juan M.M. Socías-Viciana M.M. Ureña-Amate M.D. Evaluation of nitrate controlled release systems based on (acrylamide-co-itaconic acid) hydrogels. React. Funct. Polym. 2019 141 82 90 10.1016/j.reactfunctpolym.2019.05.007
    [Google Scholar]
  49. Garland M.J. Caffarel-Salvador E. Migalska K. Woolfson A.D. Donnelly R.F. Dissolving polymeric microneedle arrays for electrically assisted transdermal drug delivery. J. Control. Release 2012 159 1 52 59 10.1016/j.jconrel.2012.01.003 22265694
    [Google Scholar]
  50. Wang Q.L. Zhu D.D. Chen Y. Guo X.D. A fabrication method of microneedle molds with controlled microstructures. Mater. Sci. Eng. C 2016 65 135 142 10.1016/j.msec.2016.03.097
    [Google Scholar]
  51. Tekko I.A. Chen G. Domínguez-Robles J. Thakur R.R.S. Hamdan I.M.N. Vora L. Larrañeta E. McElnay J.C. McCarthy H.O. Rooney M. Donnelly R.F. Development and characterisation of novel poly (vinyl alcohol)/poly (vinyl pyrrolidone)-based hydrogel-forming microneedle arrays for enhanced and sustained transdermal delivery of methotrexate. Int. J. Pharm. 2020 586 119580 10.1016/j.ijpharm.2020.119580 32593650
    [Google Scholar]
  52. Dash M. Chiellini F. Ottenbrite R.M. Chiellini E. Chitosan—A versatile semi-synthetic polymer in biomedical applications. Prog. Polym. Sci. 2011 36 8 981 1014 10.1016/j.progpolymsci.2011.02.001
    [Google Scholar]
  53. Gokhale D. Chen I. Doyle P.S. Micelle-Laden Hydrogel Microparticles for the Removal of Hydrophobic Micropollutants from Water. ACS Appl. Polym. Mater. 2022 4 1 746 754 10.1021/acsapm.1c01691
    [Google Scholar]
  54. Zahra Q. Minhas M.U. Khan S. Wu P.C. Suhail M. Iqbal R. Bashir M. Fabrication of polyethylene glycol hydrogels with enhanced swelling; loading capacity and release kinetics. Polym. Bull. 2022 79 7 5389 5415 10.1007/s00289‑021‑03740‑8
    [Google Scholar]
  55. Zhu C. Tang N. Gan J. Zhang X. Li Y. Jia X. Cheng Y. A pH-sensitive semi-interpenetrating polymer network hydrogels constructed by konjac glucomannan and poly (γ-glutamic acid): Synthesis, characterization and swelling behavior. Int. J. Biol. Macromol. 2021 185 229 239 10.1016/j.ijbiomac.2021.06.046 34119552
    [Google Scholar]
  56. Namazi H. Hasani M. Yadollahi M. Antibacterial oxidized starch/ZnO nanocomposite hydrogel: Synthesis and evaluation of its swelling behaviours in various pHs and salt solutions. Int. J. Biol. Macromol. 2019 126 578 584 10.1016/j.ijbiomac.2018.12.242 30594626
    [Google Scholar]
  57. Nandiyanto A.B.D. Oktiani R. Ragadhita R. Indonesian. J. Sci. Technol. 2019 4 97 118
    [Google Scholar]
  58. Sivanantham M. Kesavamoorthy R. Sairam T.N. Sabharwal K.N. Raj B. Stimulus response and molecular structural modification of polyacrylamide gel in nitric acid: A study by Raman, FTIR, and photoluminescence techniques. J. Polym. Sci., B, Polym. Phys. 2008 46 7 710 720 10.1002/polb.21402
    [Google Scholar]
  59. Thakur S. Arotiba O.A. Synthesis, swelling and adsorption studies of a pH-responsive sodium alginate–poly(acrylic acid) superabsorbent hydrogel. Polym. Bull. 2018 75 10 4587 4606 10.1007/s00289‑018‑2287‑0
    [Google Scholar]
  60. Di Maggio R. Dirè S. Callone E. Bergamonti L. Lottici P.P. Albatici R. Rigon R. Ataollahi N. Super-adsorbent polyacrylate under swelling in water for passive solar control of building envelope. SN Appl. Sci. 2020 2 1 45 10.1007/s42452‑019‑1814‑4
    [Google Scholar]
  61. Parvathy P.A. Ayobami A.V. Raichur A.M. Sahoo S.K. Methacrylated alkali lignin grafted P(Nipam-Co-AAc) copolymeric hydrogels: Tuning the mechanical and stimuli-responsive properties. Int. J. Biol. Macromol. 2021 192 180 196 10.1016/j.ijbiomac.2021.09.183 34619273
    [Google Scholar]
  62. Emam H.E. Shaheen T.I. Design of a dual pH and temperature responsive hydrogel based on esterified cellulose nanocrystals for potential drug release. Carbohydr. Polym. 2022 278 118925 10.1016/j.carbpol.2021.118925 34973743
    [Google Scholar]
  63. Mohammadinejad R. Maleki H. Larrañeta E. Fajardo A.R. Nik A.B. Shavandi A. Sheikhi A. Ghorbanpour M. Farokhi M. Govindh P. Cabane E. Azizi S. Aref A.R. Mozafari M. Mehrali M. Thomas S. Mano J.F. Mishra Y.K. Thakur V.K. Status and future scope of plant-based green hydrogels in biomedical engineering. Appl. Mater. Today 2019 16 213 246 10.1016/j.apmt.2019.04.010
    [Google Scholar]
  64. Kim M. Cha C. Modulation of functional pendant chains within poly(ethylene glycol) hydrogels for refined control of protein release. Sci. Rep. 2018 8 1 4315 10.1038/s41598‑018‑22249‑1 29531294
    [Google Scholar]
  65. Kong B.J. Kim A. Park S.N. Properties and in vitro drug release of hyaluronic acid-hydroxyethyl cellulose hydrogels for transdermal delivery of isoliquiritigenin. Carbohydr. Polym. 2016 147 473 481 10.1016/j.carbpol.2016.04.021 27178954
    [Google Scholar]
  66. Wan Ishak W.H. Yong Jia O. Ahmad I. pH-Responsive Gamma-Irradiated Poly(Acrylic Acid)-Cellulose-Nanocrystal-Reinforced Hydrogels. Polymers (Basel) 2020 12 9 1932 10.3390/polym12091932 32867014
    [Google Scholar]
  67. Makvandi P. Kirkby M. Hutton A.R.J. Shabani M. Yiu C.K.Y. Baghbantaraghdari Z. Jamaledin R. Carlotti M. Mazzolai B. Mattoli V. Donnelly R.F. Engineering Microneedle Patches for Improved Penetration: Analysis, Skin Models and Factors Affecting Needle Insertion. Nano-Micro Lett. 2021 13 1 93 10.1007/s40820‑021‑00611‑9
    [Google Scholar]
  68. Cordeiro A.S. Tekko I.A. Jomaa M.H. Vora L. McAlister E. Volpe-Zanutto F. Nethery M. Baine P.T. Mitchell N. McNeill D.W. Donnelly R.F. Two-Photon Polymerisation 3D Printing of Microneedle Array Templates with Versatile Designs: Application in the Development of Polymeric Drug Delivery Systems. Pharm. Res. 2020 37 9 174 10.1007/s11095‑020‑02887‑9
    [Google Scholar]
  69. Waghule T. Singhvi G. Dubey S.K. Pandey M.M. Gupta G. Singh M. Dua K. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed. Pharmacother. 2019 109 1249 1258 10.1016/j.biopha.2018.10.078 30551375
    [Google Scholar]
  70. Kapanya A. Somsunan R. Molloy R. Jiranusornkul S. Leewattanapasuk W. Jongpaiboonkit L. Kong Y. Synthesis of polymeric hydrogels incorporating chlorhexidine gluconate as antibacterial wound dressings. J. Biomater. Sci. Polym. Ed. 2020 31 7 895 909 10.1080/09205063.2020.1725862 32009564
    [Google Scholar]
  71. Yallur B.C. Katrahalli U. Krishna P.M. Hadagali M.D. BSA binding and antibacterial studies of newly synthesized 5,6-Dihydroimidazo[2,1-b]thiazole-2-carbaldehyde. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019 222 117192 10.1016/j.saa.2019.117192 31174150
    [Google Scholar]
  72. Sharma D. Dev D. Prasad D.N. Hans M. Sustained Release Drug Delivery System with the Role of Natural Polymers: A review. J. Drug Deliv. Ther. 2019 9 3-s 913 923 10.22270/jddt.v9i3‑s.2859
    [Google Scholar]
  73. Khosa A. Reddi S. Saha R.N. Nanostructured lipid carriers for site-specific drug delivery. Biomed. Pharmacother. 2018 103 598 613 10.1016/j.biopha.2018.04.055 29677547
    [Google Scholar]
  74. Thakur N. Sharma B. Bishnoi S. Jain S. Nayak D. Sarma T.K. Biocompatible Fe 3+ and Ca 2+ Dual Cross-Linked G-Quadruplex Hydrogels as Effective Drug Delivery System for pH-Responsive Sustained Zero-Order Release of Doxorubicin. ACS Appl. Bio Mater. 2019 2 8 3300 3311 10.1021/acsabm.9b00334 35030772
    [Google Scholar]
  75. Bruschi M.L. Strategies to modify the drug release from pharmaceutical systems. Woodhead Publishing 2015
    [Google Scholar]
  76. Adepu S. Khandelwal M. Ex-situ modification of bacterial cellulose for immediate and sustained drug release with insights into release mechanism. Carbohydr. Polym. 2020 249 116816 10.1016/j.carbpol.2020.116816 32933664
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018346286241121052105
Loading
/content/journals/cdd/10.2174/0115672018346286241121052105
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: protein ; Hydrogel ; transdermal ; microneedle ; drug delivery ; bovine serum albumin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test