Skip to content
2000
image of Exploring Naturally-Derived Targeted Nano Delivery Therapy for Burn Wound Healing with Special Emphasis on Preclinical Outcomes

Abstract

Plant bioactive are being used since the early days of medicinal discovery for their various therapeutic activities and are safer compared to modern medicines. According to World Health Organization (WHO), approximately 180,000 deaths from burns occur every year with the majority in countries. Recent years have witnessed significant advancements in this domain, with numerous plant bioactive and their various nanoformulations demonstrating promising preclinical burn wound healing activity and identified plant-based nanotechnology of various materials through some variations of cellular mechanisms. A comprehensive search was conducted on scientific databases like PubMed, Web of Science, ScienceDirect and Google Scholar to retrieve relevant literature on burn wound, plants, nano formulations and studies from 1990 to 2024. From a total of approximately 180 studies, 40 studies were screened out following the inclusion and exclusion criteria, which reported 40 different plants and plant extracts with their various nano-formulations (NFs) that were used against burn wounds preclinically. This study provides the current scenario of naturally-derived targeted therapy, exploring the impact of natural products on various nanotechnology in burn wound healing on a preclinical model. This comprehensive review provides the application of herbal nano-formulations (HBNF) for the treatment of burn wounds. Natural products and their derivatives may include many unidentified bioactive chemicals or untested nano-formulations that might be useful in today's medical toolbox. Mostly, nano-delivery system modulates the bioactive compound's effectiveness on burn wounds and increases compatibility by suppressing inflammation. However, their exploration remains incomplete, necessitating possible pathways and mechanisms of action using clinical models.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018343042241120072749
2024-12-03
2025-01-22
Loading full text...

Full text loading...

References

  1. Wang W. Lu K. Yu C. Huang Q. Du Y.Z. Nano-drug delivery systems in wound treatment and skin regeneration. J. Nanobiotechnology 2019 17 1 82 10.1186/s12951‑019‑0514‑y 31291960
    [Google Scholar]
  2. Souto E.B. Ribeiro A.F. Ferreira M.I. Teixeira M.C. Shimojo A.A.M. Soriano J.L. Naveros B.C. Durazzo A. Lucarini M. Souto S.B. Santini A. New nanotechnologies for the treatment and repair of skin burns infections. Int. J. Mol. Sci. 2020 21 2 393 10.3390/ijms21020393 31936277
    [Google Scholar]
  3. Smolle C. Cambiaso-Daniel J. Forbes A.A. Wurzer P. Hundeshagen G. Branski L.K. Huss F. Kamolz L.P. Recent trends in burn epidemiology worldwide: A systematic review. Burns 2017 43 2 249 257 10.1016/j.burns.2016.08.013 27600982
    [Google Scholar]
  4. Desforges J.F. Deitch E.A. The management of burns. N. Engl. J. Med. 1990 323 18 1249 1253 10.1056/NEJM199011013231806 2120587
    [Google Scholar]
  5. Wild T. Rahbarnia A. Kellner M. Sobotka L. Eberlein T. Basics in nutrition and wound healing. Nutrition 2010 26 9 862 866 10.1016/j.nut.2010.05.008 20692599
    [Google Scholar]
  6. Hermans M.H.E. Results of an internet survey on the treatment of partial thickness burns, full thickness burns, and donor sites. J. Burn Care Res. 2007 28 6 835 847 10.1097/BCR.0b013e3181599b88 17925651
    [Google Scholar]
  7. Roshangar L. Rad J. Kheirjou R. Ranjkesh M. Khosroshahi A. Skin burns: Review of molecular mechanisms and therapeutic approaches. Wounds 2019 31 12 308 315 31730513
    [Google Scholar]
  8. Guo S. DiPietro L.A. Factors affecting wound healing. J. Dent. Res. 2010 89 3 219 229 10.1177/0022034509359125 20139336
    [Google Scholar]
  9. Ghosh P.K. Gaba A. Phyto-extracts in wound healing. J. Pharm. Pharm. Sci. 2013 16 5 760 820 10.18433/J3831V 24393557
    [Google Scholar]
  10. Sandhiya V. Ubaidulla U. A review on herbal drug loaded into pharmaceutical carrier techniques and its evaluation process. Fut. J. Pharmaceut. Sci. 2020 6 1 51 10.1186/s43094‑020‑00050‑0
    [Google Scholar]
  11. Xu R. Luo G. Xia H. He W. Zhao J. Liu B. Tan J. Zhou J. Liu D. Wang Y. Yao Z. Zhan R. Yang S. Wu J. Novel bilayer wound dressing composed of silicone rubber with particular micropores enhanced wound re-epithelialization and contraction. Biomaterials 2015 40 1 11 10.1016/j.biomaterials.2014.10.077 25498800
    [Google Scholar]
  12. Andritoiu C.V. Andriescu C.E. Ibanescu C. Lungu C. Ivanescu B. Vlase L. Havarneanu C. Popa M. Effects and Characterization of Some Topical Ointments Based on Vegetal Extracts on Incision, Excision, and Thermal Wound Models. Molecules 2020 25 22 5356 10.3390/molecules25225356 33207838
    [Google Scholar]
  13. Martin P. Wound healing--aiming for perfect skin regeneration. Science (80-) 1997 276 75 81 10.1126/science.276.5309.75
    [Google Scholar]
  14. Gainza G. Villullas S. Pedraz J.L. Hernandez R.M. Igartua M. Advances in drug delivery systems (DDSs) to release growth factors for wound healing and skin regeneration. Nanomedicine 2015 11 6 1551 1573 10.1016/j.nano.2015.03.002 25804415
    [Google Scholar]
  15. Eming S.A. Krieg T. Davidson J.M. Inflammation in wound repair: molecular and cellular mechanisms. J. Invest. Dermatol. 2007 127 3 514 525 10.1038/sj.jid.5700701 17299434
    [Google Scholar]
  16. Velnar T. Bailey T. Smrkolj V. The wound healing process: an overview of the cellular and molecular mechanisms. J. Int. Med. Res. 2009 37 5 1528 1542 10.1177/147323000903700531 19930861
    [Google Scholar]
  17. Malinda K.M. Sidhu G.S. Banaudha K.K. Gaddipati J.P. Maheshwari R.K. Goldstein A.L. Kleinman H.K. Thymosin α 1 stimulates endothelial cell migration, angiogenesis, and wound healing. J. Immunol. 1998 160 2 1001 1006 10.4049/jimmunol.160.2.1001 9551940
    [Google Scholar]
  18. Li B. Wang J.H.C. Fibroblasts and myofibroblasts in wound healing: Force generation and measurement. J. Tissue Viability 2011 20 4 108 120 10.1016/j.jtv.2009.11.004 19995679
    [Google Scholar]
  19. Montesinos M.C. Gadangi P. Longaker M. Sung J. Levine J. Nilsen D. Reibman J. Li M. Jiang C.K. Hirschhorn R. Recht P.A. Ostad E. Levin R.I. Cronstein B.N. Wound healing is accelerated by agonists of adenosine A2 (G α s-linked) receptors. J. Exp. Med. 1997 186 9 1615 1620 10.1084/jem.186.9.1615 9348321
    [Google Scholar]
  20. Stadelmann W.K. Digenis A.G. Tobin G.R. Physiology and healing dynamics of chronic cutaneous wounds. Am. J. Surg. 1998 176 2 Suppl. 26S 38S 10.1016/S0002‑9610(98)00183‑4 9777970
    [Google Scholar]
  21. Pawar H.V. Tetteh J. Boateng J.S. Preparation, optimisation and characterisation of novel wound healing film dressings loaded with streptomycin and diclofenac. Colloids Surf. B Biointerfaces 2013 102 102 110 10.1016/j.colsurfb.2012.08.014 23006557
    [Google Scholar]
  22. Sabitha M. Rajiv S. Preparation and characterization of ampicillin-incorporated electrospun polyurethane scaffolds for wound healing and infection control. Polym. Eng. Sci. 2015 55 3 541 548 10.1002/pen.23917
    [Google Scholar]
  23. Pásztor N. Rédai E. Szabó Z.I. Sipos E. Preparation and Characterization of Levofloxacin-Loaded Nanofibers as Potential Wound Dressings. Acta Med. Marisiensis 2017 63 2 66 69 10.1515/amma‑2017‑0014
    [Google Scholar]
  24. Parihar A. Parihar M.S. Milner S. Bhat S. Oxidative stress and anti-oxidative mobilization in burn injury. Burns 2008 34 1 6 17 10.1016/j.burns.2007.04.009 17905515
    [Google Scholar]
  25. Süntar I. Akkol E.K. Nahar L. Sarker S.D. Wound healing and antioxidant properties: do they coexist in plants? Free Radic. Antioxid. 2012 2 2 1 7 10.5530/ax.2012.2.2.1
    [Google Scholar]
  26. Blass S.C. Goost H. Tolba R.H. Stoffel-Wagner B. Kabir K. Burger C. Stehle P. Ellinger S. Time to wound closure in trauma patients with disorders in wound healing is shortened by supplements containing antioxidant micronutrients and glutamine: A PRCT. Clin. Nutr. 2012 31 4 469 475 10.1016/j.clnu.2012.01.002 22284340
    [Google Scholar]
  27. Ruszymah B.H.I. Chowdhury S.R. Manan N.A.B.A. Fong O.S. Adenan M.I. Saim A.B. Aqueous extract of Centella asiatica promotes corneal epithelium wound healing in vitro. J. Ethnopharmacol. 2012 140 2 333 338 10.1016/j.jep.2012.01.023 22301444
    [Google Scholar]
  28. Thang P.T. Patrick S. Teik L.S. Yung C.S. Anti-oxidant effects of the extracts from the leaves of Chromolaena odorata on human dermal fibroblasts and epidermal keratinocytes against hydrogen peroxide and hypoxanthine–xanthine oxidase induced damage. Burns 2001 27 4 319 327 10.1016/S0305‑4179(00)00137‑6 11348739
    [Google Scholar]
  29. Umachigi S.P. Jayaveera K.N. Ashok Kumar C.K. Kumar G.S. Vrushabendra swamy B.M. Kishore Kumar D.V. Studies on Wound Healing Properties of <i>Quercus infectoria</i>. Trop. J. Pharm. Res. 2008 7 1 10.4314/tjpr.v7i1.14677
    [Google Scholar]
  30. Mensah A.Y. Sampson J. Houghton P.J. Hylands P.J. Westbrook J. Dunn M. Hughes M.A. Cherry G.W. Effects of Buddleja globosa leaf and its constituents relevant to wound healing. J. Ethnopharmacol. 2001 77 2-3 219 226 10.1016/S0378‑8741(01)00297‑5 11535367
    [Google Scholar]
  31. Shukla A. Rasik A.M. Dhawan B.N. Asiaticoside-induced elevation of antioxidant levels in healing wounds. Phytother. Res. 1999 13 1 50 54 10.1002/(SICI)1099‑1573(199902)13:1<50::AID‑PTR368>3.0.CO;2‑V 10189951
    [Google Scholar]
  32. Li H. Li B. Ma J. Ye J. Guo P. Li L. Fate of antibiotic-resistant bacteria and antibiotic resistance genes in the electrokinetic treatment of antibiotic-polluted soil. Chem. Eng. J. 2018 337 584 594 10.1016/j.cej.2017.12.154
    [Google Scholar]
  33. Gao W. Chen Y. Zhang Y. Zhang Q. Zhang L. Nanoparticle-based local antimicrobial drug delivery. Adv. Drug Deliv. Rev. 2018 127 46 57 10.1016/j.addr.2017.09.015 28939377
    [Google Scholar]
  34. Mofazzal Jahromi M.A. Sahandi Zangabad P. Moosavi Basri S.M. Sahandi Zangabad K. Ghamarypour A. Aref A.R. Karimi M. Hamblin M.R. Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing. Adv. Drug Deliv. Rev. 2018 123 33 64 10.1016/j.addr.2017.08.001 28782570
    [Google Scholar]
  35. Rajendran N.K. Kumar S.S.D. Houreld N.N. Abrahamse H. A review on nanoparticle based treatment for wound healing. J. Drug Deliv. Sci. Technol. 2018 44 421 430 10.1016/j.jddst.2018.01.009
    [Google Scholar]
  36. Rahman M. Kamal M.A. Special issue: Cancer nanotherapeutics: Targeted medicine, therapeutic vaccination and challenges with cancer nanomedicines. Semin. Cancer Biol. 2021 69 1 4 10.1016/j.semcancer.2021.02.003 33571666
    [Google Scholar]
  37. Huang R. Hu J. Qian W. Chen L. Zhang D. Recent advances in nanotherapeutics for the treatment of burn wounds. Burns Trauma 2021 9 tkab026 10.1093/burnst/tkab026 34778468
    [Google Scholar]
  38. Debone H.S. Lopes P.S. Severino P. Yoshida C.M.P. Souto E.B. da Silva C.F. Chitosan/Copaiba oleoresin films for would dressing application. Int. J. Pharm. 2019 555 146 152 10.1016/j.ijpharm.2018.11.054 30468843
    [Google Scholar]
  39. Blanco-Fernandez B. Castaño O. Mateos-Timoneda M.Á. Engel E. Pérez-Amodio S. Nanotechnology Approaches in Chronic Wound Healing. Adv. Wound Care (New Rochelle) 2021 10 5 234 256 10.1089/wound.2019.1094 32320364
    [Google Scholar]
  40. Rahim M.A. Jan N. Khan S. Shah H. Madni A. Khan A. Jabar A. Khan S. Elhissi A. Hussain Z. Aziz H.C. Sohail M. Khan M. Thu H.E. Recent Advancements in Stimuli Responsive Drug Delivery Platforms for Active and Passive Cancer Targeting. Cancers (Basel) 2021 13 4 670 10.3390/cancers13040670 33562376
    [Google Scholar]
  41. Hussain Z. Thu H.E. Rawas-Qalaji M. Naseem M. Khan S. Sohail M. Recent developments and advanced strategies for promoting burn wound healing. J. Drug Deliv. Sci. Technol. 2022 68 103092 10.1016/j.jddst.2022.103092
    [Google Scholar]
  42. Dash B. Xu Z. Lin L. Koo A. Ndon S. Berthiaume F. Dardik A. Hsia H. Stem Cells and Engineered Scaffolds for Regenerative Wound Healing. Bioengineering (Basel) 2018 5 1 23 10.3390/bioengineering5010023 29522497
    [Google Scholar]
  43. Mazini L. Rochette L. Admou B. Amal S. Malka G. Hopes and Limits of Adipose-Derived Stem Cells (ADSCs) and Mesenchymal Stem Cells (MSCs) in Wound Healing. Int. J. Mol. Sci. 2020 21 4 1306 10.3390/ijms21041306 32075181
    [Google Scholar]
  44. Rasulov M.F. Vasil’chenkov A.V. Onishchenko N.A. Krasheninnikov M.E. Kravchenko V.I. Gorshenin T.L. Pidtsan R.E. Potapov I.V. First experience in the use of bone marrow mesenchymal stem cells for the treatment of a patient with deep skin burns. Bull. Exp. Biol. Med. 2005 139 1 141 144 10.1007/s10517‑005‑0232‑3 16142297
    [Google Scholar]
  45. Pan S.C. Burn blister fluids in the neovascularization stage of burn wound healing: A comparison between superficial and deep partial-thickness burn wounds. Burns Trauma 2013 1 1 27 31 10.4103/2321‑3868.113332 27574619
    [Google Scholar]
  46. Wang X.Q. Kravchuk O. Winterford C. Kimble R.M. The correlation of in vivo burn scar contraction with the level of α-smooth muscle actin expression. Burns 2011 37 8 1367 1377 10.1016/j.burns.2011.07.018 21855218
    [Google Scholar]
  47. Wood F.M. Kolybaba M.L. Allen P. The use of cultured epithelial autograft in the treatment of major burn wounds: Eleven years of clinical experience. Burns 2006 32 5 538 544 10.1016/j.burns.2006.02.025 16777338
    [Google Scholar]
  48. Charruyer A. Ghadially R. Stem cells and tissue-engineered skin. Skin Pharmacol. Physiol. 2009 22 2 55 62 10.1159/000178864 19188753
    [Google Scholar]
  49. Wong M. Chua A. Tan B.K. Cultured epithelial autografts for the coverage of large wounds: minimizing skin graft donor sites in the sick patient. Eur. J. Plast. Surg. 2013 36 6 371 376 10.1007/s00238‑012‑0770‑7
    [Google Scholar]
  50. Cirodde A. Leclerc T. Jault P. Duhamel P. Lataillade J.J. Bargues L. Cultured epithelial autografts in massive burns: A single-center retrospective study with 63 patients. Burns 2011 37 6 964 972 10.1016/j.burns.2011.03.011 21550174
    [Google Scholar]
  51. Obeng M.K. McCauley R.L. Barnett J.R. Heggers J.P. Sheridan K. Schutzler S.S. Cadaveric allograft discards as a result of positive skin cultures. Burns 2001 27 3 267 271 10.1016/S0305‑4179(00)00116‑9 11311520
    [Google Scholar]
  52. Kua E.H.J. Goh C.Q. Ting Y. Chua A. Song C. Comparing the use of glycerol preserved and cryopreserved allogenic skin for the treatment of severe burns: differences in clinical outcomes and in vitro tissue viability. Cell Tissue Bank. 2012 13 2 269 279 10.1007/s10561‑011‑9254‑4 21484230
    [Google Scholar]
  53. Rogers A.D. Allorto N.L. Adams S. Adams K.G. Hudson D.A. Rode H. Isn’t it time for a cadaver skin bank in South Africa? Ann. Burns Fire Disasters 2013 26 3 142 146 24563640
    [Google Scholar]
  54. Lorenti A. Wound Healing: From Epidermis Culture to Tissue Engineering. Cellbio (Irvine Calif.) 2012 1 2 17 29 10.4236/cellbio.2012.12003
    [Google Scholar]
  55. Sachlos E. Czernuszka J.T. Making Tissue Engineering Scaffolds Work. Review: The application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur. Cell. Mater. 2003 5 29 40 10.22203/eCM.v005a03 14562270
    [Google Scholar]
  56. Sierra-Sánchez Á. Kim K.H. Blasco-Morente G. Arias-Santiago S. Cellular human tissue-engineered skin substitutes investigated for deep and difficult to heal injuries. NPJ Regen. Med. 2021 6 1 35 10.1038/s41536‑021‑00144‑0 34140525
    [Google Scholar]
  57. Ashley E.A. Towards precision medicine. Nat. Rev. Genet. 2016 17 9 507 522 10.1038/nrg.2016.86 27528417
    [Google Scholar]
  58. Srinivasarao M. Galliford C.V. Low P.S. Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nat. Rev. Drug Discov. 2015 14 3 203 219 10.1038/nrd4519 25698644
    [Google Scholar]
  59. Péczka N. Orgován Z. Ábrányi-Balogh P. Keserű G.M. Electrophilic warheads in covalent drug discovery: an overview. Expert Opin. Drug Discov. 2022 17 4 413 422 10.1080/17460441.2022.2034783 35129005
    [Google Scholar]
  60. Li Y. Chen M. Yao B. Lu X. Zhang X. He P. Vasilatos S.N. Ren X. Bian W. Yao C. Transferrin receptor-targeted redox/pH-sensitive podophyllotoxin prodrug micelles for multidrug-resistant breast cancer therapy. J. Mater. Chem. B Mater. Biol. Med. 2019 7 38 5814 5824 10.1039/C9TB00651F 31495855
    [Google Scholar]
  61. Fani M. Tamma M.L. Nicolas G.P. Lasri E. Medina C. Raynal I. Port M. Weber W.A. Maecke H.R. In vivo imaging of folate receptor positive tumor xenografts using novel 68Ga-NODAGA-folate conjugates. Mol. Pharm. 2012 9 5 1136 1145 10.1021/mp200418f 22497506
    [Google Scholar]
  62. Jin S.E. Jin H.E. Hong S.S. Targeted delivery system of nanobiomaterials in anticancer therapy: from cells to clinics. BioMed Res. Int. 2014 2014 1 23 10.1155/2014/814208 24672796
    [Google Scholar]
  63. Scaranti M. Cojocaru E. Banerjee S. Banerji U. Exploiting the folate receptor α in oncology. Nat. Rev. Clin. Oncol. 2020 17 6 349 359 10.1038/s41571‑020‑0339‑5 32152484
    [Google Scholar]
  64. Yamasaki T. Li L. Lau B.H.S. Garlic compounds protect vascular endothelial cells from hydrogen peroxide‐induced oxidant injury. Phytother. Res. 1994 8 7 408 412 10.1002/ptr.2650080706
    [Google Scholar]
  65. Ravindran P.N. Babu K.N. Sivaraman K. Turmeric. CRC Press 2007 10.1201/9781420006322
    [Google Scholar]
  66. Gopinath D. Ahmed M.R. Gomathi K. Chitra K. Sehgal P.K. Jayakumar R. Dermal wound healing processes with curcumin incorporated collagen films. Biomaterials 2004 25 10 1911 1917 10.1016/S0142‑9612(03)00625‑2 14738855
    [Google Scholar]
  67. Marwah R.G. Fatope M.O. Mahrooqi R.A. Varma G.B. Abadi H.A. Al-Burtamani S.K.S. Antioxidant capacity of some edible and wound healing plants in Oman. Food Chem. 2007 101 2 465 470 10.1016/j.foodchem.2006.02.001
    [Google Scholar]
  68. Pattanayak S.P. Sunita P. Wound healing, anti-microbial and antioxidant potential of Dendrophthoe falcata (L.f) Ettingsh. J. Ethnopharmacol. 2008 120 2 241 247 10.1016/j.jep.2008.08.019 18790035
    [Google Scholar]
  69. Demilew W. Adinew G.M. Asrade S. Evaluation of the Wound Healing Activity of the Crude Extract of Leaves of Acanthus polystachyus Delile (Acanthaceae). Evid. Based Complement. Alternat. Med. 2018 2018 1 2047896 10.1155/2018/2047896 29991951
    [Google Scholar]
  70. Lin Y.H. Lin J.H. Hong Y.S. Development of chitosan/poly‐γ‐glutamic acid/pluronic/curcumin nanoparticles in chitosan dressings for wound regeneration. J. Biomed. Mater. Res. B Appl. Biomater. 2017 105 1 81 90 10.1002/jbm.b.33394 26426455
    [Google Scholar]
  71. Schrand A.M. Rahman M.F. Hussain S.M. Schlager J.J. Smith D.A. Syed A.F. Metal‐based nanoparticles and their toxicity assessment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010 2 5 544 568 10.1002/wnan.103 20681021
    [Google Scholar]
  72. Qadir A. Jahan S. Aqil M. Warsi M.H. Alhakamy N.A. Alfaleh M.A. Khan N. Ali A. Phytochemical-Based Nano-Pharmacotherapeutics for Management of Burn Wound Healing. Gels 2021 7 4 209 10.3390/gels7040209 34842674
    [Google Scholar]
  73. Tang T. Yin L. Yang J. Shan G. Emodin, an anthraquinone derivative from Rheum officinale Baill, enhances cutaneous wound healing in rats. Eur. J. Pharmacol. 2007 567 3 177 185 10.1016/j.ejphar.2007.02.033 17540366
    [Google Scholar]
  74. Dai X.Y. Nie W. Wang Y.C. Shen Y. Li Y. Gan S.J. Electrospun emodin polyvinylpyrrolidone blended nanofibrous membrane: a novel medicated biomaterial for drug delivery and accelerated wound healing. J. Mater. Sci. Mater. Med. 2012 23 11 2709 2716 10.1007/s10856‑012‑4728‑x 22875606
    [Google Scholar]
  75. Suwantong O. Ruktanonchai U. Supaphol P. In vitro biological evaluation of electrospun cellulose acetate fiber mats containing asiaticoside or curcumin. J. Biomed. Mater. Res. A 2010 94A 4 1216 1225 10.1002/jbm.a.32797 20694988
    [Google Scholar]
  76. Panichpakdee J. Pavasant P. Supaphol P. Electrospinning of Asiaticoside/2-Hydroxypropyl-β-cyclodextrin Inclusion Complex-loaded Cellulose Acetate Fiber Mats: Release Characteristics and Potential for Use as Wound Dressing. Porrime 2014 38 3 338 350 10.7317/pk.2014.38.3.338
    [Google Scholar]
  77. Suwantong O. Ruktanonchai U. Supaphol P. Electrospun cellulose acetate fiber mats containing asiaticoside or Centella asiatica crude extract and the release characteristics of asiaticoside. Polymer (Guildf.) 2008 49 19 4239 4247 10.1016/j.polymer.2008.07.020
    [Google Scholar]
  78. Momtazi-Borojeni A.A. Haftcheshmeh S.M. Esmaeili S.A. Johnston T.P. Abdollahi E. Sahebkar A. Curcumin: A natural modulator of immune cells in systemic lupus erythematosus. Autoimmun. Rev. 2018 17 2 125 135 10.1016/j.autrev.2017.11.016 29180127
    [Google Scholar]
  79. Liakos I. Rizzello L. Hajiali H. Brunetti V. Carzino R. Pompa P.P. Athanassiou A. Mele E. Fibrous wound dressings encapsulating essential oils as natural antimicrobial agents. J. Mater. Chem. B Mater. Biol. Med. 2015 3 8 1583 1589 10.1039/C4TB01974A 32262430
    [Google Scholar]
  80. Huang S. Fu X. Naturally derived materials-based cell and drug delivery systems in skin regeneration. J. Control. Release 2010 142 2 149 159 10.1016/j.jconrel.2009.10.018 19850093
    [Google Scholar]
  81. Korrapati P.S. Karthikeyan K. Satish A. Krishnaswamy V.R. Venugopal J.R. Ramakrishna S. Recent advancements in nanotechnological strategies in selection, design and delivery of biomolecules for skin regeneration. Mater. Sci. Eng. C 2016 67 747 765 10.1016/j.msec.2016.05.074 27287175
    [Google Scholar]
  82. Gardner J.C. Wu H. Noel J.G. Ramser B.J. Pitstick L. Saito A. Nikolaidis N.M. McCormack F.X. Keratinocyte growth factor supports pulmonary innate immune defense through maintenance of alveolar antimicrobial protein levels and macrophage function. Am. J. Physiol. Lung Cell. Mol. Physiol. 2016 310 9 L868 L879 10.1152/ajplung.00363.2015 26919897
    [Google Scholar]
  83. Feng Z.G. Pang S.F. Guo D.J. Yang Y.T. Liu B. Wang J.W. Zheng K.Q. Lin Y. Recombinant keratinocyte growth factor 1 in tobacco potentially promotes wound healing in diabetic rats. BioMed Res. Int. 2014 2014 1 9 10.1155/2014/579632 24783215
    [Google Scholar]
  84. Koria P. Yagi H. Kitagawa Y. Megeed Z. Nahmias Y. Sheridan R. Yarmush M.L. Self-assembling elastin-like peptides growth factor chimeric nanoparticles for the treatment of chronic wounds. Proc. Natl. Acad. Sci. USA 2011 108 3 1034 1039 10.1073/pnas.1009881108 21193639
    [Google Scholar]
  85. Ye M. Kim S. Park K. Issues in long-term protein delivery using biodegradable microparticles. J. Control. Release 2010 146 2 241 260 10.1016/j.jconrel.2010.05.011 20493221
    [Google Scholar]
  86. Chereddy K.K. Vandermeulen G. Préat V. PLGA based drug delivery systems: Promising carriers for wound healing activity. Wound Repair Regen. 2016 24 2 223 236 10.1111/wrr.12404 26749322
    [Google Scholar]
  87. Zhang Y. Wischke C. Mittal S. Mitra A. Schwendeman S.P. Design of Controlled Release PLGA Microspheres for Hydrophobic Fenretinide. Mol. Pharm. 2016 13 8 2622 2630 10.1021/acs.molpharmaceut.5b00961 27144450
    [Google Scholar]
  88. Chereddy K.K. Her C.H. Comune M. Moia C. Lopes A. Porporato P.E. Vanacker J. Lam M.C. Steinstraesser L. Sonveaux P. Zhu H. Ferreira L.S. Vandermeulen G. Préat V. PLGA nanoparticles loaded with host defense peptide LL37 promote wound healing. J. Control. Release 2014 194 138 147 10.1016/j.jconrel.2014.08.016 25173841
    [Google Scholar]
  89. Dai T. Tegos G.P. Burkatovskaya M. Castano A.P. Hamblin M.R. Chitosan acetate bandage as a topical antimicrobial dressing for infected burns. Antimicrob. Agents Chemother. 2009 53 2 393 400 10.1128/AAC.00760‑08 19015341
    [Google Scholar]
  90. Karimi M. Sahandi Zangabad P. Ghasemi A. Amiri M. Bahrami M. Malekzad H. Ghahramanzadeh Asl H. Mahdieh Z. Bozorgomid M. Ghasemi A. Rahmani Taji Boyuk M.R. Hamblin M.R. Temperature-Responsive Smart Nanocarriers for Delivery Of Therapeutic Agents: Applications and Recent Advances. ACS Appl. Mater. Interfaces 2016 8 33 21107 21133 10.1021/acsami.6b00371 27349465
    [Google Scholar]
  91. Shrestha A. Hamblin M.R. Kishen A. Characterization of a conjugate between Rose Bengal and chitosan for targeted antibiofilm and tissue stabilization effects as a potential treatment of infected dentin. Antimicrob. Agents Chemother. 2012 56 9 4876 4884 10.1128/AAC.00810‑12 22777042
    [Google Scholar]
  92. Dai T. Tanaka M. Huang Y.Y. Hamblin M.R. Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects. Expert Rev. Anti Infect. Ther. 2011 9 7 857 879 10.1586/eri.11.59 21810057
    [Google Scholar]
  93. Holban A.M. Grumezescu V. Grumezescu A.M. Vasile B.Ş. Truşcă R. Cristescu R. Socol G. Iordache F. Antimicrobial nanospheres thin coatings prepared by advanced pulsed laser technique. Beilstein J. Nanotechnol. 2014 5 872 880 10.3762/bjnano.5.99 24991524
    [Google Scholar]
  94. Baxter R.M. Dai T. Kimball J. Wang E. Hamblin M.R. Wiesmann W.P. McCarthy S.J. Baker S.M. Chitosan dressing promotes healing in third degree burns in mice: Gene expression analysis shows biphasic effects for rapid tissue regeneration and decreased fibrotic signaling. J. Biomed. Mater. Res. A 2013 101A 2 340 348 10.1002/jbm.a.34328 22847951
    [Google Scholar]
  95. Karimi M. Avci P. Ahi M. Gazori T. Hamblin M.R. Naderi-Manesh H. Evaluation of Chitosan-Tripolyphosphate Nanoparticles as a p-shRNA Delivery Vector: Formulation, Optimization and Cellular Uptake Study. J. Nanopharm. Drug Deliv. 2013 1 3 266 278 10.1166/jnd.2013.1027 26989641
    [Google Scholar]
  96. Abbasi E. Aval S.F. Akbarzadeh A. Milani M. Nasrabadi H.T. Joo S.W. Hanifehpour Y. Nejati-Koshki K. Pashaei-Asl R. Dendrimers: synthesis, applications, and properties. Nanoscale Res. Lett. 2014 9 1 247 10.1186/1556‑276X‑9‑247 24994950
    [Google Scholar]
  97. Chaniotakis N. Thermos K. Kalomiraki M. Dendrimers as tunable vectors of drug delivery systems and biomedical and ocular applications. Int. J. Nanomedicine 2015 1 1 10.2147/IJN.S93069
    [Google Scholar]
  98. Nusbaum A.G. Gil J. Rippy M.K. Warne B. Valdes J. Claro A. Davis S.C. Effective method to remove wound bacteria: comparison of various debridement modalities in an in vivo porcine model. J. Surg. Res. 2012 176 2 701 707 10.1016/j.jss.2011.11.1040 22440935
    [Google Scholar]
  99. Manca M.L. Matricardi P. Cencetti C. Peris J.E. Melis V. Carbone C. Escribano E. Zaru M. Fadda A.M. Manconi M. Combination of argan oil and phospholipids for the development of an effective liposome-like formulation able to improve skin hydration and allantoin dermal delivery. Int. J. Pharm. 2016 505 1-2 204 211 10.1016/j.ijpharm.2016.04.008 27063848
    [Google Scholar]
  100. Zhao Y.Z. Lu C.T. Zhang Y. Xiao J. Zhao Y.P. Tian J.L. Xu Y.Y. Feng Z.G. Xu C.Y. Selection of high efficient transdermal lipid vesicle for curcumin skin delivery. Int. J. Pharm. 2013 454 1 302 309 10.1016/j.ijpharm.2013.06.052 23830940
    [Google Scholar]
  101. Sumi Maria B. Devadiga A. Shetty Kodialbail V. Saidutta M.B. Synthesis of silver nanoparticles using medicinal Zizyphus xylopyrus bark extract. Appl. Nanosci. 2015 5 6 755 762 10.1007/s13204‑014‑0372‑8
    [Google Scholar]
  102. El Maghraby G.M. Barry B.W. Williams A.C. Liposomes and skin: From drug delivery to model membranes. Eur. J. Pharm. Sci. 2008 34 4-5 203 222 10.1016/j.ejps.2008.05.002 18572392
    [Google Scholar]
  103. Ranjbar-Mohammadi M. Rabbani S. Bahrami S.H. Joghataei M.T. Moayer F. Antibacterial performance and in vivo diabetic wound healing of curcumin loaded gum tragacanth/poly(ε-caprolactone) electrospun nanofibers. Mater. Sci. Eng. C 2016 69 1183 1191 10.1016/j.msec.2016.08.032 27612816
    [Google Scholar]
  104. Bayat S. Amiri N. Pishavar E. Kalalinia F. Movaffagh J. Hashemi M. Bromelain-loaded chitosan nanofibers prepared by electrospinning method for burn wound healing in animal models. Life Sci. 2019 229 57 66 10.1016/j.lfs.2019.05.028 31085247
    [Google Scholar]
  105. Pinzón-García A.D. Cassini-Vieira P. Ribeiro C.C. de Matos Jensen C.E. Barcelos L.S. Cortes M.E. Sinisterra R.D. Efficient cutaneous wound healing using bixin-loaded PCL nanofibers in diabetic mice. J. Biomed. Mater. Res. B Appl. Biomater. 2017 105 7 1938 1949 10.1002/jbm.b.33724 27292445
    [Google Scholar]
  106. Ehterami A. Salehi M. Farzamfar S. Vaez A. Samadian H. Sahrapeyma H. Mirzaii M. Ghorbani S. Goodarzi A. In vitro and in vivo study of PCL/COLL wound dressing loaded with insulin-chitosan nanoparticles on cutaneous wound healing in rats model. Int. J. Biol. Macromol. 2018 117 601 609 10.1016/j.ijbiomac.2018.05.184 29807077
    [Google Scholar]
  107. Zhang J. Zheng T. Alarçin E. Byambaa B. Guan X. Ding J. Zhang Y.S. Li Z. Porous electrospun fibers with self‐sealing functionality: An enabling strategy for trapping biomacromolecules. Small 2017 13 47 1701949 10.1002/smll.201701949 29094479
    [Google Scholar]
  108. Naseri-Nosar M. Farzamfar S. Sahrapeyma H. Ghorbani S. Bastami F. Vaez A. Salehi M. Cerium oxide nanoparticle-containing poly (ε-caprolactone)/gelatin electrospun film as a potential wound dressing material: In vitro and in vivo evaluation. Mater. Sci. Eng. C 2017 81 366 372 10.1016/j.msec.2017.08.013 28887985
    [Google Scholar]
  109. Haseeb M.T. Hussain M.A. Abbas K. Youssif B.G.M. Bashir S. Yuk S.H. Bukhari S.N.A. Linseed hydrogel-mediated green synthesis of silver nanoparticles for antimicrobial and wound-dressing applications. Int. J. Nanomedicine 2017 12 2845 2855 10.2147/IJN.S133971 28435262
    [Google Scholar]
  110. Philip D. Unni C. Aromal S.A. Vidhu V.K. Murraya Koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011 78 2 899 904 10.1016/j.saa.2010.12.060 21215687
    [Google Scholar]
  111. Shan B. Schaaf C. Schmidt A. Lucia K. Buchfelder M. Losa M. Kuhlen D. Kreutzer J. Perone M.J. Arzt E. Stalla G.K. Renner U. Curcumin suppresses HIF1A synthesis and VEGFA release in pituitary adenomas. J. Endocrinol. 2012 214 3 389 398 10.1530/JOE‑12‑0207 22739211
    [Google Scholar]
  112. Kabir M.T. Rahman M.H. Akter R. Behl T. Kaushik D. Mittal V. Pandey P. Akhtar M.F. Saleem A. Albadrani G.M. Kamel M. Khalifa S.A.M. El-Seedi H.R. Abdel-Daim M.M. Potential role of curcumin and its nanoformulations to treat various types of cancers. Biomolecules 2021 11 3 392 10.3390/biom11030392 33800000
    [Google Scholar]
  113. Kumari A. Raina N. Wahi A. Goh K.W. Sharma P. Nagpal R. Jain A. Ming L.C. Gupta M. Wound-healing effects of curcumin and its nanoformulations: A comprehensive review. Pharmaceutics 2022 14 11 2288 10.3390/pharmaceutics14112288 36365107
    [Google Scholar]
  114. Cao M. Duan Z. Wang X. Gong P. Zhang L. Ruan B. Curcumin promotes diabetic foot ulcer wound healing by inhibiting miR-152-3p and activating the FBN1/TGF-β pathway. Mol. Biotechnol. 2024 66 5 1266 1278 10.1007/s12033‑023‑01027‑z 38206528
    [Google Scholar]
  115. Choudhary M.K. Kataria J. Cameotra S.S. Singh J. A facile biomimetic preparation of highly stabilized silver nanoparticles derived from seed extract of Vigna radiata and evaluation of their antibacterial activity. Appl. Nanosci. 2016 6 1 105 111 10.1007/s13204‑015‑0418‑6
    [Google Scholar]
  116. Ahmed S. Ahmad M. Swami B.L. Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res. 2016 7 1 17 28 10.1016/j.jare.2015.02.007 26843966
    [Google Scholar]
  117. Fong J. Wood F. Nanocrystalline silver dressings in wound management: a review. Int. J. Nanomedicine 2006 1 4 441 449 10.2147/nano.2006.1.4.441 17722278
    [Google Scholar]
  118. Thomas R. Soumya K.R. Mathew J. Radhakrishnan E.K. Electrospun polycaprolactone membrane incorporated with biosynthesized silver nanoparticles as effective wound dressing material. Appl. Biochem. Biotechnol. 2015 176 8 2213 2224 10.1007/s12010‑015‑1709‑9 26113218
    [Google Scholar]
  119. Gowda B.H.J. Mohanto S. Singh A. Bhunia A. Abdelgawad M.A. Ghosh S. Ansari M.J. Pramanik S. Nanoparticle-based therapeutic approaches for wound healing: a review of the state-of-the-art. Mater. Today Chem. 2023 27 101319 10.1016/j.mtchem.2022.101319
    [Google Scholar]
  120. Mathew S. Abraham T.E. In vitro antioxidant activity and scavenging effects of Cinnamomum verum leaf extract assayed by different methodologies. Food Chem. Toxicol. 2006 44 2 198 206 10.1016/j.fct.2005.06.013 16087283
    [Google Scholar]
  121. Giri S.P. Varma S.B. Study of wound healing activity ofTectona grandis Linn. leaf extract on rats. Anc. Sci. Life 2013 32 4 241 244 10.4103/0257‑7941.131984 24991074
    [Google Scholar]
  122. Jadhav N. Powar T. Shinde S. Nadaf S. Herbal nanoparticles: A patent review. Asian J. Pharm. 2014 8 1 58 10.4103/0973‑8398.134101
    [Google Scholar]
  123. Hromadka M. Collins J.B. Reed C. Han L. Kolappa K.K. Cairns B.A. Andrady T. van Aalst J.A. Nanofiber applications for burn care. J. Burn Care Res. 2008 29 5 695 703 10.1097/BCR.0b013e31818480c9 18779672
    [Google Scholar]
  124. Hafezi F. Rad H.E. Naghibzadeh B. Nouhi A. Naghibzadeh G. Actinidia deliciosa (kiwifruit), a new drug for enzymatic debridement of acute burn wounds. Burns 2010 36 3 352 355 10.1016/j.burns.2009.04.021 19616384
    [Google Scholar]
  125. Jalali F.S.S. Tajik H. Hadian M. Efficacy of topical application of alcoholic extract of yarrow in the healing process of experimental burn wounds in rabbit. Comp. Clin. Pathol. 2012 21 2 177 181 10.1007/s00580‑010‑1081‑7
    [Google Scholar]
  126. Barua C.C. Talukdar A. Begum S.A. Pathak D.C. Sarma D.K. Borah R.S. Gupta A. In vivo wound-healing efficacy and antioxidant activity of Achyranthes aspera in experimental burns. Pharm. Biol. 2012 50 7 892 899 10.3109/13880209.2011.642885 22480137
    [Google Scholar]
  127. Lv R.L. Wu B.Y. Chen X.D. Jiang Q. The effects of aloe extract on nitric oxide and endothelin levels in deep-partial thickness burn wound tissue in rat. Zhonghua Shao Shang Za Zhi 2006 22 5 362 365 17283882
    [Google Scholar]
  128. Hajhashemi V. Ghannadi A. Heidari A.H. Anti-inflammatory and wound healing activities of Aloe littoralis in rats. Res. Pharm. Sci. 2012 7 2 73 78 23181083
    [Google Scholar]
  129. Somboonwong J. Thanamittramanee S. Jariyapongskul A. Patumraj S. Therapeutic effects of Aloe vera on cutaneous microcirculation and wound healing in second degree burn model in rats. J. Med. Assoc. Thai. 2000 83 4 417 425 10808702
    [Google Scholar]
  130. Baru C.C. Talukdar A. Begum S.A. Buragohain B. Roy J.D. Pathak D.C. Sarma D.K. Gupta A.K. Bora R.S. Effect of Alternanthera brasiliana (L) Kuntze on healing of dermal burn wound. Indian J. Exp. Biol. 2012 50 1 56 60 22279942
    [Google Scholar]
  131. Asdaq S.M.B. Rao G.S. Ananth K.V. Asad M. Prem Kumar N. Evaluation of wound healing potential of bauhinia purpurea leaf extracts in rats. Indian J. Pharm. Sci. 2010 72 1 122 127 10.4103/0250‑474X.62250 20582204
    [Google Scholar]
  132. Kouhihabibidehkordi G. Kheiri S. Karimi I. Taheri F. Bijad E. Bahadoram M. Alibabaie Z. Asgharian S. Zamani H. Rafieian-Kopaei M. Effect of white tea (Camellia sinensis) extract on skin wound healing process in rats. World J. Plast. Surg. 2021 10 1 85 95 10.29252/wjps.10.1.85 33833959
    [Google Scholar]
  133. Gomes F.S.L. Spínola C.V. Ribeiro H.A. Lopes M.T. Cassali G.D. Salas C.E. Wound-healing activity of a proteolytic fraction from Carica candamarcensis on experimentally induced burn. Burns 2010 36 2 277 283 10.1016/j.burns.2009.04.007 19577373
    [Google Scholar]
  134. Sanwal R. Chaudhary A.K. Wound healing and antimicrobial potential of Carissa spinarum Linn. in albino mice. J. Ethnopharmacol. 2011 135 3 792 796 10.1016/j.jep.2011.04.025 21527332
    [Google Scholar]
  135. Csupor D. Blazsó G. Balogh Á. Hohmann J. The traditional Hungarian medicinal plant Centaurea sadleriana Janka accelerates wound healing in rats. J. Ethnopharmacol. 2010 127 1 193 195 10.1016/j.jep.2009.09.049 19799977
    [Google Scholar]
  136. Wu F. Bian D. Xia Y. Gong Z. Tan Q. Chen J. Dai Y. Identification of major active ingredients responsible for burn wound healing of Centella asiatica herbs. Evid. Based Complement. Alternat. Med. 2012 2012 1 13 10.1155/2012/848093 23346217
    [Google Scholar]
  137. Durgaprasad S. Srivastava P. Burn wound healing property of Cocos nucifera: An appraisal. Indian J. Pharmacol. 2008 40 4 144 146 10.4103/0253‑7613.43159 20040946
    [Google Scholar]
  138. Priya K.S. Gnanamani A. Radhakrishnan N. Babu M. Healing potential of Datura alba on burn wounds in albino rats. J. Ethnopharmacol. 2002 83 3 193 199 10.1016/S0378‑8741(02)00195‑2 12426086
    [Google Scholar]
  139. Tuhin R.H. Begum M.M. Rahman M.S. Karim R. Begum T. Ahmed S.U. Mostofa R. Hossain A. Abdel-Daim M. Begum R. Wound healing effect of Euphorbia hirta linn. (Euphorbiaceae) in alloxan induced diabetic rats. BMC Complement. Altern. Med. 2017 17 1 423 10.1186/s12906‑017‑1930‑x 28836990
    [Google Scholar]
  140. Sakarcan A. Sehirli O. Velioglu-Ovünç A. Ercan F. Erkanl G. Gedik N. Sener G. Ginkgo biloba extract improves oxidative organ damage in a rat model of thermal trauma. J. Burn Care Rehabil. 2005 26 6 515 524 10.1097/01.bcr.0000185115.17261.50 16278567
    [Google Scholar]
  141. Upadhyay N.K. Kumar R. Mandotra S.K. Meena R.N. Siddiqui M.S. Sawhney R.C. Gupta A. Safety and healing efficacy of Sea buckthorn (Hippophae rhamnoides L.) seed oil on burn wounds in rats. Food Chem. Toxicol. 2009 47 6 1146 1153 10.1016/j.fct.2009.02.002 19425187
    [Google Scholar]
  142. Afshar M. Ravarian B. Zardast M. Moallem S.A. Fard M.H. Valavi M. Evaluation of cutaneous wound healing activity of Malva sylvestris aqueous extract in BALB/c mice. Iran. J. Basic Med. Sci. 2015 18 6 616 622 26221487
    [Google Scholar]
  143. Yaman I. Durmus A.S. Ceribasi S. Yaman M. Effects of Nigella sativa and silver sulfadiazine on burn wound healing in rats. Vet. Med. (Praha) 2010 55 12 619 624 10.17221/2948‑VETMED
    [Google Scholar]
  144. Safavi F. Farimani M.M. Golalipour M. Leung P.C. Lau K.M. Kwok H.F. Wong C.W. Bayat H. Lau C.B.S. Investigations on the wound healing properties of Onosma dichroantha Boiss root extracts. S. Afr. J. Bot. 2019 125 344 352 10.1016/j.sajb.2019.08.005
    [Google Scholar]
  145. Kawahira K. Sumiyoshi M. Sakanaka M. Kimura Y. Effects of ginsenoside Rb1 at low doses on histamine, substance P, and monocyte chemoattractant protein 1 in the burn wound areas during the process of acute burn wound repair. J. Ethnopharmacol. 2008 117 2 278 284 10.1016/j.jep.2008.01.032 18329832
    [Google Scholar]
  146. Djerrou J. Maameri Z. Hamdo-Pacha Y. Serakta M. Riachi F. Djaalab H. Boukeloua A. Effect of virgin fatty oil of Pistacia lentiscus on experimental burn wound’s healing in rabbits. Afr. J. Tradit. Complement. Altern. Med. 2010 7 3 258 263 10.4314/ajtcam.v7i3.54788 21461154
    [Google Scholar]
  147. Pirbalouti A.G. Azizi S. Koohpayeh A. Healing potential of Iranian traditional medicinal plants on burn wounds in alloxan-induced diabetic rats. Rev. Bras. Farmacogn. 2012 22 2 397 403 10.1590/S0102‑695X2011005000183
    [Google Scholar]
  148. Pasdaran A. Hamedi A. The genus Scrophularia: a source of iridoids and terpenoids with a diverse biological activity. Pharm. Biol. 2017 55 1 2211 2233 10.1080/13880209.2017.1397178 29125010
    [Google Scholar]
  149. Toklu H.Z. Tunalı-Akbay T. Erkanlı G. Yüksel M. Ercan F. Şener G. Silymarin, the antioxidant component of Silybum marianum, protects against burn-induced oxidative skin injury. Burns 2007 33 7 908 916 10.1016/j.burns.2006.10.407 17521818
    [Google Scholar]
  150. Majumdar M. Nayeem N. Kamath J.V. Asad M. Evaluation ofTectona grandis leaves for wound healing activity. Pak. J. Pharm. Sci. 2007 20 2 120 124 17416566
    [Google Scholar]
  151. Lodhi S. Pawar R.S. Jain A.P. Jain A. Singhai A.K. Effect of Tephrosia purpurea (L) pers. on partial thickness and full thickness burn wounds in rats. J. Complement. Integr. Med. 2010 7 1 10.2202/1553‑3840.1344
    [Google Scholar]
  152. Kang S.Y. Jung H.W. Nam J.H. Kim W.K. Kang J.S. Kim Y.H. Cho C.W. Cho C.W. Park Y.K. Bae H.S. Effects of the fruit extract of Tribulus terrestris on skin inflammation in mice with oxazolone‐induced atopic dermatitis through regulation of calcium channels, orai‐1 and trpv3, and mast cell activation. Evid. Based Complement. Alternat. Med. 2017 2017 1 8312946 10.1155/2017/8312946 29348776
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018343042241120072749
Loading
/content/journals/cdd/10.2174/0115672018343042241120072749
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Burn wound ; bioactive compound ; preclinical study ; medicinal plant ; nanocarrier
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test