Skip to content
2000
image of Fluconazole-loaded Hyaluronic Acid-modified Transfersomal Hydrogels Containing D-panthenol for Ocular Delivery in Fungal Keratitis Management

Abstract

Background

Fungal keratitis (mycotic keratitis) is an eye infection in which the cornea is infected by fungi and such fungal keratitis management can be effectively possible by ocular administration of antifungal drugs.

Objective

The main objectives of the present research were to develop and evaluate fluconazole-loaded transfersomal hydrogels for ocular delivery in the effective management of fungal keratitis.

Methods

A 23 factorial design-based approach was used for statistical optimization, where (A) the ratio of lipid to edge activators, (B) the amount of hyaluronic acid (% HA), and (C) the ratio of edge activators (sodium deoxycholate to Span 80) were taken as three factors. The average vesicle diameter (Z, nm) of transfersomes was taken as a response. Further, fluconazole-loaded transfersomes (FTO) were incorporated into 1% Carbopol 940-based hydrogel (OF1) and 2% HMPC K4M-based hydrogel (OF2) containing D-panthenol (5% w/w).

Results

The optimal variable setting for the optimized formulations of FTO was (A) = 9.15, (B) = 0.30%, and (C) = 3.00. FTO exhibited 66.39 nm Z, 0.247 polydispersity index, – 33.10 mV zeta potential, and 65.38 ± 1.77% DEE, and desirable elasticity. TEM image of FTO demonstrated a unilamellar vesicular structure. The ocular permeation of fluconazole from transfersomal hydrogels was sustained over 24 h. All the transfersomal hydrogels showed good bioadhesion and excellent antifungal activity with respect to the zone of inhibition against than . HET-CAM study results demonstrated that both the hydrogels were non-irritant and safe for ocular. Short-term physical stability study suggested the stability of the developed formulation.

Conclusion

The current research demonstrated a new way to enhance the ocular penetration of fluconazole transfersomal hydrogel formulations for ocular delivery in the effective management of fungal keratitis.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018342369241018050810
2024-10-18
2024-11-23
Loading full text...

Full text loading...

References

  1. Díaz-Tomé V. Bendicho-Lavilla C. García-Otero X. Varela-Fernández R. Martín-Pastor M. Llovo-Taboada J. Alonso-Alonso P. Aguiar P. González-Barcia M. Fernández-Ferreiro A. Otero-Espinar F.J. Antifungal combination eye drops for fungal keratitis treatment. Pharmaceutics 2022 15 1 35 10.3390/pharmaceutics15010035 36678663
    [Google Scholar]
  2. Harbiyeli İ.İ. Erdem E. Görkemli N. İbayev A. Kandemir H. Açıkalın A. İlkit M. Yağmur M. Clinical and mycological features of fungal keratitis: A retrospective single-center study (2012-2018). Turk. J. Ophthalmol. 2022 52 2 75 85 10.4274/tjo.galenos.2021.09515 35481727
    [Google Scholar]
  3. Manikandan P. Abdel-hadi A. Randhir Babu Singh Y. Revathi R. Anita R. Banawas S. Bin Dukhyil A.A. Alshehri B. Shobana C.S. Panneer Selvam K. Narendran V. Fungal keratitis: Epidemiology, rapid detection, and antifungal susceptibilities of Fusarium and Aspergillus isolates from corneal scrapings. BioMed Res. Int. 2019 2019 1 9 10.1155/2019/6395840 30800674
    [Google Scholar]
  4. Leck A.K. Thomas P.A. Hagan M. Kaliamurthy J. Ackuaku E. John M. Newman M.J. Codjoe F.S. Opintan J.A. Kalavathy C.M. Essuman V. Jesudasan C A N. Johnson G.J. Aetiology of suppurative corneal ulcers in Ghana and south India, and epidemiology of fungal keratitis. Br. J. Ophthalmol. 2002 86 11 1211 1215 10.1136/bjo.86.11.1211 12386069
    [Google Scholar]
  5. Ansari Z. Miller D. Galor A. Current thoughts in fungal keratitis: Diagnosis and treatment. Curr. Fungal Infect. Rep. 2013 7 3 209 218 10.1007/s12281‑013‑0150‑1 24040467
    [Google Scholar]
  6. Hoffman J.J. Burton M.J. Leck A. Mycotic keratitis-A global threat from the filamentous fungi. J. Fungi (Basel) 2021 7 4 273 10.3390/jof7040273 33916767
    [Google Scholar]
  7. Sharma N. Bagga B. Singhal D. Nagpal R. Kate A. Saluja G. Maharana P.K. Fungal keratitis: A review of clinical presentations, treatment strategies and outcomes. Ocul. Surf. 2022 24 22 30 10.1016/j.jtos.2021.12.001 34915188
    [Google Scholar]
  8. Ray A. Aayilliath K A. Banerjee S. Chakrabarti A. Denning D.W. Burden of serious fungal infections in India. Open Forum Infect. Dis. 2022 9 12 ofac603 10.1093/ofid/ofac603 36589484
    [Google Scholar]
  9. Raj N. Vanathi M. Ahmed N.H. Gupta N. Lomi N. Tandon R. Recent perspectives in the management of fungal keratitis. J. Fungi (Basel) 2021 7 11 907 10.3390/jof7110907 34829196
    [Google Scholar]
  10. Awad R. Ghaith A. Awad K. Mamdouh Saad M. Elmassry A. Fungal Keratitis: Diagnosis, management, and recent advances. Clin. Ophthalmol. 2024 18 85 106 10.2147/OPTH.S447138 38223815
    [Google Scholar]
  11. Thomas P.A. Kaliamurthy J. Mycotic keratitis: Epidemiology, diagnosis and management. Clin. Microbiol. Infect. 2013 19 3 210 220 10.1111/1469‑0691.12126 23398543
    [Google Scholar]
  12. Varela-Fernández R. Díaz-Tomé V. Luaces-Rodríguez A. Conde-Penedo A. García-Otero X. Luzardo-Álvarez A. Fernández-Ferreiro A. Otero-Espinar F. Drug delivery to the posterior segment of the eye: Biopharmaceutic and pharmacokinetic considerations. Pharmaceutics 2020 12 3 269 10.3390/pharmaceutics12030269 32188045
    [Google Scholar]
  13. Gote V. Sikder S. Sicotte J. Pal D. Ocular drug delivery: Present innovations and future challenges. J. Pharmacol. Exp. Ther. 2019 370 3 602 624 10.1124/jpet.119.256933 31072813
    [Google Scholar]
  14. Das B. Nayak A.K. Mallick S. Lipid-based nanocarriers for ocular drug delivery: An updated review. J. Drug Deliv. Sci. Technol. 2022 76 103780 10.1016/j.jddst.2022.103780
    [Google Scholar]
  15. Li S. Chen L. Fu Y. Nanotechnology-based ocular drug delivery systems: Recent advances and future prospects. J. Nanobiotechnology 2023 21 1 232 10.1186/s12951‑023‑01992‑2 37480102
    [Google Scholar]
  16. Gorantla S. Rapalli V.K. Waghule T. Singh P.P. Dubey S.K. Saha R.N. Singhvi G. Nanocarriers for ocular drug delivery: Current status and translational opportunity. RSC Advances 2020 10 46 27835 27855 10.1039/D0RA04971A 35516960
    [Google Scholar]
  17. Dey S. Hasnain M.S. Jha S.K. Sahoo N. Nayak A.K. Nayak A.K. Hasnain M.S. Laha B. Maiti S. Transferosomes: A novel nanotechnological approach for transdermal drug delivery. Advanced and Modern Approaches for Drug Delivery. United States Academic Press, Elsevier Inc. 2023 199 221 10.1016/B978‑0‑323‑91668‑4.00017‑4
    [Google Scholar]
  18. Das B. Nayak A.K. Mallick S. Nayak A.K. Hasnain M.S. Aminabhavi T.M. Torchilin V.P. Transferosomes: A novel nanovesicular approach for drug delivery. Systems of Nanovesicular Drug Delivery. Academic Press, Elsevier Inc. United States 2022 103 114 10.1016/B978‑0‑323‑91864‑0.00022‑X
    [Google Scholar]
  19. Das B. Nayak A.K. Mallick S. Thyme oil-containing fluconazole-loaded transferosomal bigel for transdermal delivery. AAPS PharmSciTech 2023 24 8 240 10.1208/s12249‑023‑02698‑2 37989918
    [Google Scholar]
  20. Das B. Sen S.O. Maji R. Nayak A.K. Sen K.K. Transferosomal gel for transdermal delivery of risperidone: Formulation optimization and ex vivo permeation. J. Drug Deliv. Sci. Technol. 2017 38 59 71 10.1016/j.jddst.2017.01.006
    [Google Scholar]
  21. Malakar J. Sen S.O. Nayak A.K. Sen K.K. Formulation, optimization and evaluation of transferosomal gel for transdermal insulin delivery. Saudi Pharm. J. 2012 20 4 355 363 10.1016/j.jsps.2012.02.001 23960810
    [Google Scholar]
  22. Das B. Nayak A.K. Mallick S. Nayak A.K. Hasnain M.S. Aminabhavi T.M. Torchilin V.P. Nanovesicles for delivery of antifungal drugs. Systems of Nanovesicular Drug Delivery. Academic Press, Elsevier Inc. United States 2022 383 397
    [Google Scholar]
  23. Lynch C.R. Kondiah P.P.D. Choonara Y.E. du Toit L.C. Ally N. Pillay V. Hydrogel biomaterials for application in ocular drug delivery. Front. Bioeng. Biotechnol. 2020 8 228 10.3389/fbioe.2020.00228 32266248
    [Google Scholar]
  24. Jiang H. Xu Z. Hyaluronic acid-based nanoparticles to deliver drugs to the ocular posterior segment. Drug Deliv. 2023 30 1 2204206 10.1080/10717544.2023.2204206 37194147
    [Google Scholar]
  25. Casey-Power S. Ryan R. Behl G. McLoughlin P. Byrne M.E. Fitzhenry L. Hyaluronic acid: Its versatile use in ocular drug delivery with a specific focus on hyaluronic acid-based polyelectrolyte complexes. Pharmaceutics 2022 14 7 1479 10.3390/pharmaceutics14071479 35890371
    [Google Scholar]
  26. Guter M. Breunig M. Hyaluronan as a promising excipient for ocular drug delivery. Eur. J. Pharm. Biopharm. 2017 113 34 49 10.1016/j.ejpb.2016.11.035 27914235
    [Google Scholar]
  27. Yuan M. Niu J. Xiao Q. Ya H. Zhang Y. Fan Y. Li L. Li X. Hyaluronan-modified transfersomes based hydrogel for enhanced transdermal delivery of indomethacin. Drug Deliv. 2022 29 1 1232 1242 10.1080/10717544.2022.2053761 35403516
    [Google Scholar]
  28. Ebner F. Heller A. Rippke F. Tausch I. Topical use of dexpanthenol in skin disorders. Am. J. Clin. Dermatol. 2002 3 6 427 433 10.2165/00128071‑200203060‑00005 12113650
    [Google Scholar]
  29. Gorski J. Proksch E. Baron J.M. Schmid D. Zhang L. Dexpanthenol in wound healing after medical and cosmetic interventions (postprocedure wound healing). Pharmaceuticals (Basel) 2020 13 7 138 10.3390/ph13070138 32610604
    [Google Scholar]
  30. Camargo F.B. Jr Gaspar L.R. Maia Campos P.M. Skin moisturizing effects of panthenol-based formulations. J. Cosmet. Sci. 2011 62 4 361 370 21982351
    [Google Scholar]
  31. Scott L.N. Fiume M. Bergfeld W.F. Belsito D.V. Hill R.A. Klaassen C.D. Liebler D.C. Marks J.G. Jr Shank R.C. Slaga T.J. Snyder P.W. Heldreth B. Safety assessment of panthenol, pantothenic acid, and derivatives as used in cosmetics. Int. J. Toxicol. 2022 41 3_suppl Suppl. 77 128 10.1177/10915818221124809 36177798
    [Google Scholar]
  32. Fatima I. Rasul A. Shah S. Saadullah M. Islam N. Khames A. Salawi A. Ahmed M.M. Almoshari Y. Abbas G. Abourehab M.A.S. Mehmood Khan S. Chauhdary Z. Alshamrani M. Namazi N.I. Naguib D.M. Novasomes as nano-vesicular carriers to enhance topical delivery of fluconazole: A new approach to treat fungal infections. Molecules 2022 27 9 2936 10.3390/molecules27092936 35566287
    [Google Scholar]
  33. Cheng Z. Kandekar U. Ma X. Bhabad V. Pandit A. Liu L. Luo J. Munot N. Chorage T. Patil A. Patil S. Tao L. Optimizing fluconazole-embedded transfersomal gel for enhanced antifungal activity and compatibility studies. Front. Pharmacol. 2024 15 1353791 10.3389/fphar.2024.1353791 38606182
    [Google Scholar]
  34. Garg A. Sharma G.S. Goyal A.K. Ghosh G. Si S.C. Rath G. Recent advances in topical carriers of anti-fungal agents. Heliyon 2020 6 8 e04663 10.1016/j.heliyon.2020.e04663 32904164
    [Google Scholar]
  35. Qushawy M. Nasr A. Abd-Alhaseeb M. Swidan S. Design, Optimization and characterization of a transfersomal gel using miconazole nitrate for the treatment of candida skin infections. Pharmaceutics 2018 10 1 26 10.3390/pharmaceutics10010026 29473897
    [Google Scholar]
  36. Ahad A. Al-Saleh A.A. Al-Mohizea A.M. Al-Jenoobi F.I. Raish M. Yassin A.E.B. Alam M.A. Formulation and characterization of novel soft nanovesicles for enhanced transdermal delivery of eprosartan mesylate. Saudi Pharm. J. 2017 25 7 1040 1046 10.1016/j.jsps.2017.01.006 29158713
    [Google Scholar]
  37. Raza K. Singh B. Mahajan A. Negi P. Bhatia A. Katare O.P. Design and evaluation of flexible membrane vesicles (FMVs) for enhanced topical delivery of capsaicin. J. Drug Target. 2011 19 4 293 302 10.3109/1061186X.2010.499464 20615093
    [Google Scholar]
  38. Bandyopadhyay P.K. Nayak A.K. Thiolation of fenugreek seed polysaccharide; utilization as a novel biomucoadhesive agent in drug delivery. Int. J. Appl. Pharm. 2023 15 1 147 155 10.22159/ijap.2023v15i1.46647
    [Google Scholar]
  39. Eldesouky L.M. El-Moslemany R.M. Ramadan A.A. Morsi M.H. Khalafallah N.M. Cyclosporine lipid nanocapsules as thermoresponsive gel for dry eye management: Promising corneal mucoadhesion, biodistribution and preclinical efficacy in rabbits. Pharmaceutics 2021 13 3 360 10.3390/pharmaceutics13030360 33803242
    [Google Scholar]
  40. Hasnain M.S. Rishishwar P. Ali S. Nayak A.K. Preparation and evaluation of aceclofenac dental pastes using dillenia fruit gum for periodontitis treatment. SN Applied Sciences 2020 2 3 425 10.1007/s42452‑020‑2240‑3
    [Google Scholar]
  41. Ubaid M. Ilyas S. Mir S. Khan A.K. Rashid R. Khan M.Z.U. Kanwal Z.G. Nawaz A. Shah A. Murtaza G. Formulation and in vitro evaluation of carbopol 934-based modified clotrimazole gel for topical application. An. Acad. Bras. Cienc. 2016 88 4 2303 2317 10.1590/0001‑3765201620160162 27925034
    [Google Scholar]
  42. Samimi M.S. Mahboobian M.M. Mohammadi M. Ocular toxicity assessment of nanoemulsion in-situ gel formulation of fluconazole. Hum. Exp. Toxicol. 2021 40 12 2039 2047 10.1177/09603271211017314 34036827
    [Google Scholar]
  43. Omar M.M. Hasan O.A. El Sisi A.M. Preparation and optimization of lidocaine transferosomal gel containing permeation enhancers: A promising approach for enhancement of skin permeation. Int. J. Nanomedicine 2019 14 1551 1562 10.2147/IJN.S201356 30880964
    [Google Scholar]
  44. Satapathy B.S. Sahoo P.K. Pattnaik S. Nayak A.K. Maharana L. Sahoo R.N. Conveyance of sofosbuvir through vesicular lipid nanocarriers as an effective strategy for management of viral meningitis. RSC Advances 2023 13 47 33500 33513 10.1039/D3RA06540E 38025868
    [Google Scholar]
  45. Bhattacharjee A. Das P.J. Dey S. Nayak A.K. Roy P.K. Chakrabarti S. Marbaniang D. Das S.K. Ray S. Chattopadhyay P. Mazumder B. Development and optimization of besifloxacin hydrochloride loaded liposomal gel prepared by thin film hydration method using 32 full factorial design. Colloids Surf. A Physicochem. Eng. Asp. 2020 585 124071 10.1016/j.colsurfa.2019.124071
    [Google Scholar]
  46. Das B. Dutta S. Nayak A.K. Nanda U. Zinc alginate-carboxymethyl cashew gum microbeads for prolonged drug release: Development and optimization. Int. J. Biol. Macromol. 2014 70 506 515 10.1016/j.ijbiomac.2014.07.030 25062990
    [Google Scholar]
  47. Jana S. Ali S.A. Nayak A.K. Sen K.K. Basu S.K. Development of topical gel containing aceclofenac-crospovidone solid dispersion by “Quality by Design (QbD)” approach. Chem. Eng. Res. Des. 2014 92 11 2095 2105 10.1016/j.cherd.2014.01.025
    [Google Scholar]
  48. Agha O.A. Girgis G.N.S. El-Sokkary M.M.A. Soliman O.A.E.A. Spanlastic-laden in situ gel as a promising approach for ocular delivery of Levofloxacin: In-vitro characterization, microbiological assessment, corneal permeability and in-vivo study. Int. J. Pharm. X 2023 6 100201 10.1016/j.ijpx.2023.100201 37560488
    [Google Scholar]
  49. Janoria K.G. Gunda S. Boddu S.H.S. Mitra A.K. Novel approaches to retinal drug delivery. Expert Opin. Drug Deliv. 2007 4 4 371 388 10.1517/17425247.4.4.371 17683251
    [Google Scholar]
  50. Onugwu A.L. Nwagwu C.S. Onugwu O.S. Echezona A.C. Agbo C.P. Ihim S.A. Emeh P. Nnamani P.O. Attama A.A. Khutoryanskiy V.V. Nanotechnology based drug delivery systems for the treatment of anterior segment eye diseases. J. Control. Release 2023 354 465 488 10.1016/j.jconrel.2023.01.018 36642250
    [Google Scholar]
  51. Almeida H. Amaral M. Lobao P. Frigerio C. Sousa Lobo J. Nanoparticles in ocular drug delivery systems for topical administration: Promises and challenges. Curr. Pharm. Des. 2015 21 36 5212 5224 10.2174/1381612821666150923095155 26412360
    [Google Scholar]
  52. Verma D. Verma S. Blume G. Fahr A. Particle size of liposomes influences dermal delivery of substances into skin. Int. J. Pharm. 2003 258 1-2 141 151 10.1016/S0378‑5173(03)00183‑2 12753761
    [Google Scholar]
  53. Németh Z. Csóka I. Semnani Jazani R. Sipos B. Haspel H. Kozma G. Kónya Z. Dobó D.G. Quality by design-driven zeta potential optimisation study of liposomes with charge imparting membrane additives. Pharmaceutics 2022 14 9 1798 10.3390/pharmaceutics14091798 36145546
    [Google Scholar]
  54. Maji R. Omolo C.A. Jaglal Y. Singh S. Devnarain N. Mocktar C. Govender T. A transferosome-loaded bigel for enhanced transdermal delivery and antibacterial activity of vancomycin hydrochloride. Int. J. Pharm. 2021 607 120990 10.1016/j.ijpharm.2021.120990 34389419
    [Google Scholar]
  55. Rompicherla N.C. Joshi P. Shetty A. Sudhakar K. Amin H.I.M. Mishra Y. Mishra V. Albutti A. Alhumeed N. Design, formulation, and evaluation of aloe vera gel-based capsaicin transemulgel for osteoarthritis. Pharmaceutics 2022 14 9 1812 10.3390/pharmaceutics14091812 36145560
    [Google Scholar]
  56. Abelson M.B. Udell I.J. Weston J.H. Normal human tear pH by direct measurement. Arch. Ophthalmol. 1981 99 2 301 10.1001/archopht.1981.03930010303017 7469869
    [Google Scholar]
  57. Hamano T. Horimoto K. Lee M. Komemushi S. Sodium hyaluronate eyedrops enhance tear film stability. Jpn. J. Ophthalmol. 1996 40 1 62 65 8739501
    [Google Scholar]
  58. Abdelmonem R. Elhabal S.F. Abdelmalak N.S. El-Nabarawi M.A. Teaima M.H. Formulation and characterization of acetazolamide/carvedilol niosomal gel for glaucoma treatment: In vitro, and in vivo study. Pharmaceutics 2021 13 2 221 10.3390/pharmaceutics13020221 33562785
    [Google Scholar]
  59. Dantas M.G.B. Reis S.A.G.B. Damasceno C.M.D. Rolim L.A. Rolim-Neto P.J. Carvalho F.O. Quintans-Junior L.J. Almeida J.R.G.S. Development and evaluation of stability of a gel formulation containing the monoterpene borneol. ScientificWorldJournal 2016 2016 1 4 10.1155/2016/7394685 27247965
    [Google Scholar]
  60. Pawar P. Kashyap H. Malhotra S. Sindhu R. Hp-β-CD-voriconazole in situ gelling system for ocular drug delivery: In vitro, stability, and antifungal activities assessment. BioMed Res. Int. 2013 2013 1 9 10.1155/2013/341218 23762839
    [Google Scholar]
  61. Wu Y. Liu Y. Li X. Kebebe D. Zhang B. Ren J. Lu J. Li J. Du S. Liu Z. Research progress of in-situ gelling ophthalmic drug delivery system. Asian Journal of Pharmaceutical Sciences 2019 14 1 1 15 10.1016/j.ajps.2018.04.008 32104434
    [Google Scholar]
  62. El-Nesr O.H. Yahiya S.A. El-Gazayerly O.N. Effect of formulation design and freeze-drying on properties of fluconazole multilamellar liposomes. Saudi Pharm. J. 2010 18 4 217 224 10.1016/j.jsps.2010.07.003 23960730
    [Google Scholar]
  63. Abdel-Rashid R.S. Helal D.A. Omar M.M. El Sisi A.M. Nanogel loaded with surfactant based nanovesicles for enhanced ocular delivery of acetazolamide. Int. J. Nanomedicine 2019 14 2973 2983 10.2147/IJN.S201891 31118616
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018342369241018050810
Loading
/content/journals/cdd/10.2174/0115672018342369241018050810
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Drug delivery ; hydrogels ; ophthalmology ; antifungal ; eyes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test