Skip to content
2000
image of Recent Advances in Nanocarrier-mediated Combination Drug Therapy for Tackling Solid-resistant Tumors

Abstract

Cancer is a group of dynamic diseases characterized by uncontrollable growth and spread of cells. The heterogenic nature of cancer hinders the abolishment of cancer resulting in a narrow therapeutic index, the capacity of drug efflux, multidrug resistance, and unacceptable side effects. The major challenge in the treatment of malignancies is multidrug resistance (MDR). A novel platform, nanoscale delivery system, concluding desirable applications for the treatment of cancer with targeted and controlled release of drugs, reducing the number of side effects and systemic toxicity. Recent studies emphasize that combining 2 or more nanocarrier-mediated therapies may produce complementary therapeutic effects, perhaps resulting in improved outcomes of cancer current therapies like deterioration of drug resistance. Therefore, in this article, we scrutinize the recent advancement addressing combination therapy by combining nanoparticles with anticancer drugs. It briefly concludes a thorough overview of cancer, tumor or solid resistant tumors, the mechanism of resistant tumors, current therapies for the treatment of solid tumors, and their challenges. It also covers various types of nanoparticles used in cancer treatment, the usage of nanocarriers in resistant tumors, and nanocarrier-based combinatorial therapy for the treatment of resistant tumors as well as its benefits. However, this approach still needs to be improved for clinical applications.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018341670241124150932
2025-01-15
2025-05-11
Loading full text...

Full text loading...

References

  1. Gurunathan S. Kang M.H. Qasim M. Kim J.H. Nanoparticle-Mediated Combination Therapy: Two-in-One Approach for Cancer. Int. J. Mol. Sci. 2018 19 10 3264 10.3390/ijms19103264 30347840
    [Google Scholar]
  2. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  3. GLOBOCAN 2020: New Global Cancer Data, UICC. 2020 Available from: https://www.uicc.org/news/globocan-2020-global-cancer-data(accessed on 4-11-2024)
  4. Siegel R.L. Miller K.D. Fuchs H.E. Jemal A. Cancer statistics, 2022. CA Cancer J. Clin. 2022 72 1 7 33 10.3322/caac.21708 35020204
    [Google Scholar]
  5. Lorscheider M. Gaudin A. Nakhlé J. Veiman K.L. Richard J. Chassaing C. Challenges and opportunities in the delivery of cancer therapeutics: update on recent progress. Ther. Deliv. 2021 12 1 55 76 10.4155/tde‑2020‑0079 33307811
    [Google Scholar]
  6. Mansoori B. Mohammadi A. Davudian S. Shirjang S. Baradaran B. The different mechanisms of cancer drug resistance: A brief review. Adv. Pharm. Bull. 2017 7 3 339 348 10.15171/apb.2017.041 29071215
    [Google Scholar]
  7. Gagliardi A. Giuliano E. Venkateswararao E. Fresta M. Bulotta S. Awasthi V. Cosco D. Biodegradable polymeric nanoparticles for drug delivery to solid tumors. Front. Pharmacol. 2021 12 601626 10.3389/fphar.2021.601626 33613290
    [Google Scholar]
  8. Navya P.N. Kaphle A. Srinivas S.P. Bhargava S.K. Rotello V.M. Daima H.K. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg. 2019 6 1 23 10.1186/s40580‑019‑0193‑2 31304563
    [Google Scholar]
  9. Hasan N. Imran M. Jain D. Jha S.K. Nadaf A. Chaudhary A. Rafiya K. Jha L.A. Almalki W.H. Mohammed Y. Kesharwani P. Ahmad F.J. Advanced targeted drug delivery by bioengineered white blood cell-membrane camouflaged nanoparticulate delivery nanostructures. Environ. Res. 2023 238 Pt 1 117007 10.1016/j.envres.2023.117007 37689337
    [Google Scholar]
  10. Qureshi S.A. Rafiya K. Awasthi S. Jain A. Nadaf A. Hasan N. Kesharwani P. Ahmad F.J. Biomembrane camouflaged nanoparticles: A paradigm shifts in targeted drug delivery system. Colloids Surf. B Biointerfaces 2024 238 113893 10.1016/j.colsurfb.2024.113893 38631282
    [Google Scholar]
  11. Hasan N. Nadaf A. Imran M. Jiba U. Sheikh A. Almalki W.H. Almujri S.S. Mohammed Y.H. Kesharwani P. Ahmad F.J. Skin cancer: understanding the journey of transformation from conventional to advanced treatment approaches. Mol. Cancer 2023 22 1 168 10.1186/s12943‑023‑01854‑3 37803407
    [Google Scholar]
  12. Awasthi S. Hasan N. Nadeem M. Rizvi M.A. Alam K. Kesharwani P. Ahmad F.J. Optimized formulation of berberine hydrochloride loaded nanoemulgel for management of skin cancer. Colloids Surf. A Physicochem. Eng. Asp. 2024 687 133406 10.1016/j.colsurfa.2024.133406
    [Google Scholar]
  13. Hasan N. Imran M. Sheikh A. Tiwari N. Jaimini A. Kesharwani P. Jain G.K. Ahmad F.J. Advanced multifunctional nano-lipid carrier loaded gel for targeted delivery of 5-flurouracil and cannabidiol against non-melanoma skin cancer. Environ. Res. 2023 233 116454 10.1016/j.envres.2023.116454 37343751
    [Google Scholar]
  14. Hasan N. Imran M. Sheikh A. Saad S. Chaudhary G. Jain G.K. Kesharwani P. Ahmad F.J. Cannabis as a potential compound against various malignancies, legal aspects, advancement by exploiting nanotechnology and clinical trials. J. Drug Target. 2022 30 7 709 725 10.1080/1061186X.2022.2056188 35321629
    [Google Scholar]
  15. Sriraman S.K. Aryasomayajula B. Torchilin V.P. Barriers to drug delivery in solid tumors. Tissue Barriers 2014 2 3 e29528 10.4161/tisb.29528 25068098
    [Google Scholar]
  16. Nakamura Y. Mochida A. Choyke P.L. Kobayashi H. Nanodrug Delivery: Is the Enhanced Permeability and Retention Effect Sufficient for Curing Cancer? Bioconjug. Chem. 2016 27 10 2225 2238 10.1021/acs.bioconjchem.6b00437 27547843
    [Google Scholar]
  17. Emran T.B. Shahriar A. Mahmud A.R. Rahman T. Abir M.H. Siddiquee M.F-R. Ahmed H. Rahman N. Nainu F. Wahyudin E. Mitra S. Dhama K. Habiballah M.M. Haque S. Islam A. Hassan M.M. Multidrug Resistance in Cancer: Understanding Molecular Mechanisms, Immunoprevention and Therapeutic Approaches. Front. Oncol. 2022 12 891652 10.3389/fonc.2022.891652 35814435
    [Google Scholar]
  18. Hu C.M.J. Aryal S. Zhang L. Nanoparticle-assisted combination therapies for effective cancer treatment. Ther. Deliv. 2010 1 2 323 334 10.4155/tde.10.13 22816135
    [Google Scholar]
  19. Senapati S. Mahanta A.K. Kumar S. Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther. 2018 3 1 7 10.1038/s41392‑017‑0004‑3 29560283
    [Google Scholar]
  20. Sameer M. Arif Y. Aqil A. Nadaf A. Rafiya K. Hasan N. Kesharwani P. Ahmad F.J. Carbon nanodots as a remedial nanovesicles for drug delivery. Eur. Polym. J. 2023 200 112515 10.1016/j.eurpolymj.2023.112515
    [Google Scholar]
  21. Nadaf A. Hasan N. Fauziya Ahmad S. Gupta A. Jain D. Imtiyaz K. Moshahid Alam Rizvi M. Jain G.K. Kesharwani P. Ahmad F.J. Leucocyte membrane camouflaged poly-lactic-co-glycolic acid (PLGA) nanoparticles containing cannabidiol and paclitaxel against breast cancer therapy. Process Biochem. 2024 142 88 103 10.1016/j.procbio.2024.04.007
    [Google Scholar]
  22. Fauziya Gupta A. Nadaf A. Ahmad S. Hasan N. Imran M. Sahebkar A. Jain G.K. Kesharwani P. Ahmad F.J. Dasatinib: a potential tyrosine kinase inhibitor to fight against multiple cancer malignancies. Med. Oncol. 2023 40 6 173 10.1007/s12032‑023‑02018‑5 37165283
    [Google Scholar]
  23. Hasan N. Imran M. Jain D. Shamim A. Beg S. Kesharwani P. Jain G. Ahmad F.J. Rapid Analytical Method Development and Validation for the Simultaneous Estimation of 5-Fluorouracil and Cannabidiol in Plasma and Lipid-based Nanoformulations. Curr. Anal. Chem. 2022 18 7 798 808 10.2174/1573411018666220304085236
    [Google Scholar]
  24. Kawish S.M. Hasan N. Beg S. Qadir A. Jain G.K. Aqil M. Ahmad F.J. Docetaxel-loaded borage seed oil nanoemulsion with improved antitumor activity for solid tumor treatment: Formulation development, in vitro, in silico and in vivo evaluation. J. Drug Deliv. Sci. Technol. 2022 75 103693 10.1016/j.jddst.2022.103693
    [Google Scholar]
  25. Hasan N. Imran M. Kesharwani P. Khanna K. Karwasra R. Sharma N. Rawat S. Sharma D. Ahmad F.J. Jain G.K. Bhatnagar A. Talegaonkar S. Intranasal delivery of Naloxone-loaded solid lipid nanoparticles as a promising simple and non-invasive approach for the management of opioid overdose. Int. J. Pharm. 2021 599 120428 10.1016/j.ijpharm.2021.120428 33662465
    [Google Scholar]
  26. Kydd J. Jadia R. Velpurisiva P. Gad A. Paliwal S. Rai P. Targeting Strategies for the Combination Treatment of Cancer Using Drug Delivery Systems. Pharmaceutics 2017 9 4 46 10.3390/pharmaceutics9040046 29036899
    [Google Scholar]
  27. Cooper G.M. Cell 2000 8 103 108
    [Google Scholar]
  28. Balkwill F. Mantovani A. Inflammation and cancer: back to Virchow? Lancet 2001 357 9255 539 545 10.1016/S0140‑6736(00)04046‑0 11229684
    [Google Scholar]
  29. Whiteside T.L. Vujanovic N.L. Herberman R.B. Natural killer cells and tumor therapy. Curr. Top Microbiol. Immunol. 1998 230 221 244 10.1007/978‑3‑642‑46859‑9_13
    [Google Scholar]
  30. Zitvogel L. Tesniere A. Kroemer G. Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat. Rev. Immunol. 2006 6 10 715 727 10.1038/nri1936 16977338
    [Google Scholar]
  31. Sharma P. Hu-Lieskovan S. Wargo J.A. Ribas A. Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell 2017 168 4 707 723 10.1016/j.cell.2017.01.017 28187290
    [Google Scholar]
  32. Schoenfeld A.J. Hellmann M.D. Acquired Resistance to Immune Checkpoint Inhibitors. Cancer Cell 2020 37 4 443 455 10.1016/j.ccell.2020.03.017 32289269
    [Google Scholar]
  33. Hata A.N. Niederst M.J. Archibald H.L. Gomez-Caraballo M. Siddiqui F.M. Mulvey H.E. Maruvka Y.E. Ji F. Bhang H.E. Krishnamurthy Radhakrishna V. Siravegna G. Hu H. Raoof S. Lockerman E. Kalsy A. Lee D. Keating C.L. Ruddy D.A. Damon L.J. Crystal A.S. Costa C. Piotrowska Z. Bardelli A. Iafrate A.J. Sadreyev R.I. Stegmeier F. Getz G. Sequist L.V. Faber A.C. Engelman J.A. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nat. Med. 2016 22 3 262 269 10.1038/nm.4040 26828195
    [Google Scholar]
  34. Nakadate Y. Kodera Y. Kitamura Y. Shirasawa S. Tachibana T. Tamura T. Koizumi F. KRAS mutation confers resistance to antibody-dependent cellular cytotoxicity of cetuximab against human colorectal cancer cells. Int. J. Cancer 2014 134 9 2146 2155 10.1002/ijc.28550 24136682
    [Google Scholar]
  35. Karapetis C.S. Khambata-Ford S. Jonker D.J. O’Callaghan C.J. Tu D. Tebbutt N.C. Simes R.J. Chalchal H. Shapiro J.D. Robitaille S. Price T.J. Shepherd L. Au H-J. Langer C. Moore M.J. Zalcberg J.R. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N. Engl. J. Med. 2008 359 17 1757 1765 10.1056/NEJMoa0804385 18946061
    [Google Scholar]
  36. Karabasz A. Bzowska M. Szczepanowicz K. Biomedical Applications of Multifunctional Polymeric Nanocarriers: A Review of Current Literature. Int. J. Nanomedicine 2020 15 8673 8696 10.2147/IJN.S231477 33192061
    [Google Scholar]
  37. Romero-Garcia S. Prado-Garcia H. Carlos-Reyes A. Role of DNA Methylation in the Resistance to Therapy in Solid Tumors. Front. Oncol. 2020 10 1152 10.3389/fonc.2020.01152 32850327
    [Google Scholar]
  38. Wang H. Huang Y. Combination therapy based on nano codelivery for overcoming cancer drug resistance. Med. Drug Discov. 2020 6 100024 10.1016/j.medidd.2020.100024
    [Google Scholar]
  39. Martinez-Cardús A. Vizoso M. Moran S. Manzano J.L. Epigenetic mechanisms involved in melanoma pathogenesis and chemoresistance. Ann. Transl. Med. 2015 3 15 209 10.3978/j.issn.2305‑5839.2015.06.20 26488005
    [Google Scholar]
  40. Luo D. Carter K.A. Miranda D. Lovell J.F. Chemophototherapy: An Emerging Treatment Option for Solid Tumors. Adv. Sci. (Weinh.) 2016 4 1 1600106 10.1002/advs.201600106 28105389
    [Google Scholar]
  41. Nurgali K. Rudd J.A. Was H. Abalo R. Editorial: Cancer therapy: The challenge of handling a double-edged sword. Front. Pharmacol. 2022 13 1007762 10.3389/fphar.2022.1007762 36160386
    [Google Scholar]
  42. Saini A. Kumar M. Cancer causes and treatments. IJPSR 2022 11 7 3109 3122
    [Google Scholar]
  43. Chistiakov D.A. Myasoedova V.A. Orekhov A.N. Bobryshev Y.V. Nanocarriers in Improving Chemotherapy of Multidrug Resistant Tumors: Key Developments and Perspectives. Curr. Pharm. Des. 2017 23 22 3301 3308 10.2174/1381612823666170407123941 28403792
    [Google Scholar]
  44. Singh S.K. Singh S. Lillard J.W. Jr Singh R. Drug delivery approaches for breast cancer. Int. J. Nanomedicine 2017 12 6205 6218 10.2147/IJN.S140325 28883730
    [Google Scholar]
  45. Kesharwani S.S. Kaur S. Tummala H. Sangamwar A.T. Multifunctional approaches utilizing polymeric micelles to circumvent multidrug resistant tumors. Colloids Surf. B Biointerfaces 2019 173 581 590 10.1016/j.colsurfb.2018.10.022 30352379
    [Google Scholar]
  46. Yang X. Lian K. Tan Y. Zhu Y. Liu X. Zeng Y. Yu T. Meng T. Yuan H. Hu F. Selective uptake of chitosan polymeric micelles by circulating monocytes for enhanced tumor targeting. Carbohydr. Polym. 2020 229 115435 10.1016/j.carbpol.2019.115435 31826424
    [Google Scholar]
  47. Gao M. Deng J. Liu F. Fan A. Wang Y. Wu H. Ding D. Kong D. Wang Z. Peer D. Zhao Y. Triggered ferroptotic polymer micelles for reversing multidrug resistance to chemotherapy. Biomaterials 2019 223 119486 10.1016/j.biomaterials.2019.119486 31520887
    [Google Scholar]
  48. Yao Q. Liu Y. Kou L. Tu Y. Tang X. Zhu L. Tumor-targeted drug delivery and sensitization by MMP2-responsive polymeric micelles. Nanomedicine 2019 19 71 80 10.1016/j.nano.2019.03.012 31004812
    [Google Scholar]
  49. Ambekar R.S. Choudhary M. Kandasubramanian B. Recent advances in dendrimer-based nanoplatform for cancer treatment: A review. Eur. Polym. J. 2020 126 109546 10.1016/j.eurpolymj.2020.109546
    [Google Scholar]
  50. Choudhary S. Gupta L. Rani S. Dave K. Gupta U. Impact of Dendrimers on Solubility of Hydrophobic Drug Molecules. Front. Pharmacol. 2017 8 261 10.3389/fphar.2017.00261 28559844
    [Google Scholar]
  51. Siriviriyanun A. Tsai Y.J. Voon S.H. Kiew S.F. Imae T. Kiew L.V. Looi C.Y. Wong W.F. Lee H.B. Chung L.Y. Cyclodextrin- and dendrimer-conjugated graphene oxide as a nanocarrier for the delivery of selected chemotherapeutic and photosensitizing agents. Mater. Sci. Eng. C 2018 89 307 315 10.1016/j.msec.2018.04.020 29752102
    [Google Scholar]
  52. Golshan M. Salami-Kalajahi M. Mirshekarpour M. Roghani-Mamaqani H. Mohammadi M. Synthesis and characterization of poly(propylene imine)-dendrimer-grafted gold nanoparticles as nanocarriers of doxorubicin. Colloids Surf. B Biointerfaces 2017 155 257 265 10.1016/j.colsurfb.2017.04.029 28433942
    [Google Scholar]
  53. Pan J. Mendes L.P. Yao M. Filipczak N. Garai S. Thakur G.A. Sarisozen C. Torchilin V.P. Polyamidoamine dendrimers-based nanomedicine for combination therapy with siRNA and chemotherapeutics to overcome multidrug resistance. Eur. J. Pharm. Biopharm. 2019 136 18 28 10.1016/j.ejpb.2019.01.006 30633973
    [Google Scholar]
  54. Din F.U. Aman W. Ullah I. Qureshi O.S. Mustapha O. Shafique S. Zeb A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomedicine 2017 12 7291 7309 10.2147/IJN.S146315 29042776
    [Google Scholar]
  55. Yao Y. Zhou Y. Liu L. Xu Y. Chen Q. Wang Y. Wu S. Deng Y. Zhang J. Shao A. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Front. Mol. Biosci. 2020 7 193 10.3389/fmolb.2020.00193 32974385
    [Google Scholar]
  56. Wei Q.Y. Xu Y.M. Lau A.T.Y. Recent Progress of Nanocarrier-Based Therapy for Solid Malignancies. Cancers (Basel) 2020 12 10 2783 10.3390/cancers12102783 32998391
    [Google Scholar]
  57. Batool S. Sohail S. Ud Din F. Alamri A.H. Alqahtani A.S. Alshahrani M.A. Alshehri M.A. Choi H.G. A detailed insight of the tumor targeting using nanocarrier drug delivery system. Drug Deliv. 2023 30 1 2183815 10.1080/10717544.2023.2183815 36866455
    [Google Scholar]
  58. Mehta P.P. Ghoshal D. Pawar A.P. Kadam S.S. Dhapte-Pawar V.S. Recent advances in inhalable liposomes for treatment of pulmonary diseases: Concept to clinical stance. J. Drug Deliv. Sci. Technol. 2020 56 101509 10.1016/j.jddst.2020.101509
    [Google Scholar]
  59. Subramani T. Ganapathyswamy H. An overview of liposomal nano-encapsulation techniques and its applications in food and nutraceutical. J. Food Sci. Technol. 2020 57 10 3545 3555 10.1007/s13197‑020‑04360‑2 32903987
    [Google Scholar]
  60. Hossen S. Hossain M.K. Basher M.K. Mia M.N.H. Rahman M.T. Uddin M.J. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J. Adv. Res. 2018 15 1 18 10.1016/j.jare.2018.06.005 30581608
    [Google Scholar]
  61. Jampílek J. Kráľová K. Recent advances in lipid nanocarriers applicable in the fight against cancer. Nanoarchitectonics in Biomedicine. Elsevier 2019 219 294 10.1016/B978‑0‑12‑816200‑2.00009‑8
    [Google Scholar]
  62. Sercombe L. Veerati T. Moheimani F. Wu S.Y. Sood A.K. Hua S. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 2015 6 286 10.3389/fphar.2015.00286 26648870
    [Google Scholar]
  63. Kang X.J. Wang H.Y. Peng H.G. Chen B.F. Zhang W.Y. Wu A.H. Xu Q. Huang Y.Z. Codelivery of dihydroartemisinin and doxorubicin in mannosylated liposomes for drug-resistant colon cancer therapy. Acta Pharmacol. Sin. 2017 38 6 885 896 10.1038/aps.2017.10 28479604
    [Google Scholar]
  64. Gao M. Xu Y. Qiu L. Enhanced combination therapy effect on paclitaxel-resistant carcinoma by chloroquine co-delivery via liposomes. Int. J. Nanomedicine 2015 10 6615 6632 10.2147/IJN.S91463 26543365
    [Google Scholar]
  65. Nasirizadeh S. Malaekeh-Nikouei B. Solid lipid nanoparticles and nanostructured lipid carriers in oral cancer drug delivery. J. Drug Deliv. Sci. Technol. 2020 55 101458 10.1016/j.jddst.2019.101458
    [Google Scholar]
  66. Rajabi M. Mousa S.A. Lipid nanoparticles and their application in nanomedicine. Curr. Pharm. Biotechnol. 2016 17 8 662 672 10.2174/1389201017666160415155457 27087491
    [Google Scholar]
  67. Mihai M.M. Holban A.M. Călugăreanu A. Orzan O.A. Recent advances in diagnosis and therapy of skin cancers through nanotechnological approaches. Nanostructures for Cancer Therapy Elsevier 2017 285 306 10.1016/B978‑0‑323‑46144‑3.00011‑8
    [Google Scholar]
  68. Affram K.O. Smith T. Ofori E. Krishnan S. Underwood P. Trevino J.G. Agyare E. Cytotoxic effects of gemcitabine-loaded solid lipid nanoparticles in pancreatic cancer cells. J. Drug Deliv. Sci. Technol. 2020 55 101374 10.1016/j.jddst.2019.101374 31903101
    [Google Scholar]
  69. Oliveira M.S. Aryasomayajula B. Pattni B. Mussi S.V. Ferreira L.A.M. Torchilin V.P. Solid lipid nanoparticles co-loaded with doxorubicin and α-tocopherol succinate are effective against drug-resistant cancer cells in monolayer and 3-D spheroid cancer cell models. Int. J. Pharm. 2016 512 1 292 300 10.1016/j.ijpharm.2016.08.049 27568499
    [Google Scholar]
  70. Pedrosa P. Corvo M.L. Ferreira-Silva M. Martins P. Carvalheiro M.C. Costa P.M. Martins C. Martins L.M.D.R.S. Baptista P.V. Fernandes A.R. Targeting cancer resistance via multifunctional gold nanoparticles. Int. J. Mol. Sci. 2019 20 21 5510 10.3390/ijms20215510 31694227
    [Google Scholar]
  71. Rathinaraj P. Muthusamy G. Prasad N.R. Gunaseelan S. Kim B. Zhu S. Folate-gold-bilirubin nanoconjugate induces apoptotic death in multidrug-resistant oral carcinoma cells. Eur. J. Drug Metab. Pharmacokinet. 2020 45 2 285 296 10.1007/s13318‑019‑00600‑9 31858458
    [Google Scholar]
  72. Gopisetty M.K. Kovács D. Igaz N. Rónavári A. Bélteky P. Rázga Z. Venglovecz V. Csoboz B. Boros I.M. Kónya Z. Kiricsi M. Endoplasmic reticulum stress: major player in size-dependent inhibition of P-glycoprotein by silver nanoparticles in multidrug-resistant breast cancer cells. J. Nanobiotechnology 2019 17 1 9 10.1186/s12951‑019‑0448‑4 30670028
    [Google Scholar]
  73. Wang Y. Zhao R. Wang S. Liu Z. Tang R. In vivo dual-targeted chemotherapy of drug resistant cancer by rationally designed nanocarrier. Biomaterials 2016 75 71 81 10.1016/j.biomaterials.2015.09.030 26491996
    [Google Scholar]
  74. Fernández M. Javaid F. Chudasama V. Advances in targeting the folate receptor in the treatment/imaging of cancers. Chem. Sci. (Camb.) 2017 9 4 790 810 10.1039/C7SC04004K 29675145
    [Google Scholar]
  75. Heimann R.B. Evsvukov S.E. Koga Y. Carbon allotropes: a suggested classification scheme based on valence orbital hybridization. Carbon 1997 35 10-11 1654 1658 10.1016/S0008‑6223(97)82794‑7
    [Google Scholar]
  76. Li D. Lin L. Fan Y. Liu L. Shen M. Wu R. Du L. Shi X. Ultrasound-enhanced fluorescence imaging and chemotherapy of multidrug-resistant tumors using multifunctional dendrimer/carbon dot nanohybrids. Bioact. Mater. 2020 6 3 729 739 10.1016/j.bioactmat.2020.09.015 33024894
    [Google Scholar]
  77. Dong X. Sun Z. Wang X. Leng X. An innovative MWCNTs/DOX/TC nanosystem for chemo-photothermal combination therapy of cancer. Nanomedicine 2017 13 7 2271 2280 10.1016/j.nano.2017.07.002 28712919
    [Google Scholar]
  78. Fan K. Xi J. Fan L. Wang P. Zhu C. Tang Y. Xu X. Liang M. Jiang B. Yan X. Gao L. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun. 2018 9 1 1440 10.1038/s41467‑018‑03903‑8 29650959
    [Google Scholar]
  79. Thakur M. Mewada A. Pandey S. Bhori M. Singh K. Sharon M. Sharon M. Milk-derived multi-fluorescent graphene quantum dot-based cancer theranostic system. Mater. Sci. Eng. C 2016 67 468 477 10.1016/j.msec.2016.05.007 27287144
    [Google Scholar]
  80. Feng T. Chua H.J. Zhao Y. Carbon‐Dot‐Mediated Co‐Administration of Chemotherapeutic Agents for Reversing Cisplatin Resistance in Cancer Therapy. ChemNanoMat 2018 4 8 801 806 10.1002/cnma.201700367
    [Google Scholar]
  81. Zhu H. Wang Y. Hussain A. Zhang Z. Shen Y. Guo S. Nanodiamond mediated co-delivery of doxorubicin and malaridine to maximize synergistic anti-tumor effects on multi-drug resistant MCF-7/ADR cells. J. Mater. Chem. B Mater. Biol. Med. 2017 5 19 3531 3540 10.1039/C7TB00449D 32264289
    [Google Scholar]
  82. Pei X. Zhu Z. Gan Z. Chen J. Zhang X. Cheng X. Wan Q. Wang J. PEGylated nano-graphene oxide as a nanocarrier for delivering mixed anticancer drugs to improve anticancer activity. Sci. Rep. 2020 10 1 2717 10.1038/s41598‑020‑59624‑w 32066812
    [Google Scholar]
  83. Kong J. Cai M. Zhu R. Zhang Y. Du Y. Jing X. Sun Y. Chang R. Qu C. Dong X. Ni J. Yin X. The utilization of metal-organic frameworks in tumor-targeted drug delivery systems. J. Sci. Adv. Mater. Devices 2024 9 3 100770 10.1016/j.jsamd.2024.100770
    [Google Scholar]
  84. Wang H. Li S. Yang Y. Zhang L. Zhang Y. Wei T. Perspectives of metal-organic framework nanosystem to overcome tumor drug resistance. Cancer Drug Resist. 2022 5 4 954 970 10.20517/cdr.2022.76 36627891
    [Google Scholar]
  85. Chen Q. Xu M. Zheng W. Xu T. Deng H. Liu J. Se/Ru-decorated porous metal-organic framework nanoparticles for the delivery of pooled siRNAs to reversing multidrug resistance in taxol-resistant breast cancer cells. ACS Appl. Mater. Interfaces 2017 9 8 6712 6724 10.1021/acsami.6b12792 28191840
    [Google Scholar]
  86. Yao X. Chen D. Zhao B. Yang B. Jin Z. Fan M. Tao G. Qin S. Yang W. He Q. Acid-Degradable Hydrogen-Generating Metal-Organic Framework for Overcoming Cancer Resistance/Metastasis and Off-Target Side Effects. Adv. Sci. (Weinh.) 2022 9 10 e2101965 10.1002/advs.202101965 35098699
    [Google Scholar]
  87. Singh N. Kim J. Kim J. Lee K. Zunbul Z. Lee I. Kim E. Chi S.G. Kim J.S. Covalent organic framework nanomedicines: Biocompatibility for advanced nanocarriers and cancer theranostics applications. Bioact. Mater. 2022 21 358 380 10.1016/j.bioactmat.2022.08.016 36185736
    [Google Scholar]
  88. Li W.Y. Wan J.J. Kan J.L. Wang B. Song T. Guan Q. Zhou L.L. Li Y.A. Dong Y.B. A biodegradable covalent organic framework for synergistic tumor therapy. Chem. Sci. (Camb.) 2023 14 6 1453 1460 10.1039/D2SC05732H 36794183
    [Google Scholar]
  89. Zhang G. Li X. Liao Q. Liu Y. Xi K. Huang W. Jia X. Water-dispersible PEG-curcumin/amine-functionalized covalent organic framework nanocomposites as smart carriers for in vivo drug delivery. Nat. Commun. 2018 9 1 2785 10.1038/s41467‑018‑04910‑5 30018290
    [Google Scholar]
  90. Zhang R.X. Wong H.L. Xue H.Y. Eoh J.Y. Wu X.Y. Nanomedicine of synergistic drug combinations for cancer therapy - Strategies and perspectives. J. Control. Release 2016 240 489 503 10.1016/j.jconrel.2016.06.012 27287891
    [Google Scholar]
  91. Bayat Mokhtari R. Homayouni T.S. Baluch N. Morgatskaya E. Kumar S. Das B. Yeger H. Combination therapy in combating cancer. Oncotarget 2017 8 23 38022 38043 10.18632/oncotarget.16723 28410237
    [Google Scholar]
  92. Yamaoka T. Ohba M. Ohmori T. Molecular-Targeted Therapies for Epidermal Growth Factor Receptor and Its Resistance Mechanisms. Int. J. Mol. Sci. 2017 18 11 2420 10.3390/ijms18112420 29140271
    [Google Scholar]
  93. Hu C.M.J. Zhang L. Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem. Pharmacol. 2012 83 8 1104 1111 10.1016/j.bcp.2012.01.008 22285912
    [Google Scholar]
  94. Jia J. Zhu F. Ma X. Cao Z. Cao Z.W. Li Y. Li Y.X. Chen Y.Z. Mechanisms of drug combinations: interaction and network perspectives. Nat. Rev. Drug Discov. 2009 8 2 111 128 10.1038/nrd2683 19180105
    [Google Scholar]
  95. Livney Y.D. Assaraf Y.G. Rationally designed nanovehicles to overcome cancer chemoresistance. Adv. Drug Deliv. Rev. 2013 65 13-14 1716 1730 10.1016/j.addr.2013.08.006 23954781
    [Google Scholar]
  96. Wang Z. He Q. Zhao W. Luo J. Gao W. Tumor-homing, pH- and ultrasound-responsive polypeptide-doxorubicin nanoconjugates overcome doxorubicin resistance in cancer therapy. J. Control. Release 2017 264 66 75 10.1016/j.jconrel.2017.08.017 28837822
    [Google Scholar]
  97. Tang Y. Liang J. Wu A. Chen Y. Zhao P. Lin T. Zhang M. Xu Q. Wang J. Huang Y. Co-Delivery of Trichosanthin and Albendazole by Nano-Self-Assembly for Overcoming Tumor Multidrug-Resistance and Metastasis. ACS Appl. Mater. Interfaces 2017 9 32 26648 26664 10.1021/acsami.7b05292 28741923
    [Google Scholar]
  98. Yap T.A. Omlin A. de Bono J.S. Development of therapeutic combinations targeting major cancer signaling pathways. J. Clin. Oncol. 2013 31 12 1592 1605 10.1200/JCO.2011.37.6418 23509311
    [Google Scholar]
  99. LeBaron S. Zeltzer L.K. LeBaron C. Scott S.E. Zeltzer P.M. Chemotherapy side effects in pediatric oncology patients: drugs, age, and sex as risk factors. Med. Pediatr. Oncol. 1988 16 4 263 268 10.1002/mpo.2950160408 3419392
    [Google Scholar]
  100. Partridge A.H. Burstein H.J. Winer E.P. Side effects of chemotherapy and combined chemohormonal therapy in women with early-stage breast cancer. J. Natl. Cancer Inst. Monogr. 2001 2001 30 135 142 10.1093/oxfordjournals.jncimonographs.a003451 11773307
    [Google Scholar]
  101. Albain K.S. Nag S.M. Calderillo-Ruiz G. Jordaan J.P. Llombart A.C. Pluzanska A. Rolski J. Melemed A.S. Reyes-Vidal J.M. Sekhon J.S. Simms L. O’Shaughnessy J. Gemcitabine plus Paclitaxel versus Paclitaxel monotherapy in patients with metastatic breast cancer and prior anthracycline treatment. J. Clin. Oncol. 2008 26 24 3950 3957 10.1200/JCO.2007.11.9362 18711184
    [Google Scholar]
  102. Hanahan D. Bergers G. Bergsland E. Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J. Clin. Invest. 2000 105 8 1045 1047 10.1172/JCI9872 10772648
    [Google Scholar]
  103. Gorski D.H. Beckett M.A. Jaskowiak N.T. Calvin D.P. Mauceri H.J. Salloum R.M. Seetharam S. Koons A. Hari D.M. Kufe D.W. Weichselbaum R.R. Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res. 1999 59 14 3374 3378 10416597
    [Google Scholar]
  104. Gao Z. Zhang L. Sun Y. Nanotechnology applied to overcome tumor drug resistance. J. Control. Release 2012 162 1 45 55 10.1016/j.jconrel.2012.05.051 22698943
    [Google Scholar]
  105. Sarkar S. Horn G. Moulton K. Oza A. Byler S. Kokolus S. Longacre M. Cancer development, progression, and therapy: an epigenetic overview. Int. J. Mol. Sci. 2013 14 10 21087 21113 10.3390/ijms141021087 24152442
    [Google Scholar]
  106. Byler S. Goldgar S. Heerboth S. Leary M. Housman G. Moulton K. Sarkar S. Genetic and epigenetic aspects of breast cancer progression and therapy. Anticancer Res. 2014 34 3 1071 1077 24596345
    [Google Scholar]
  107. Byler S. Sarkar S. Do epigenetic drug treatments hold the key to killing cancer progenitor cells? Epigenomics 2014 6 2 161 165 10.2217/epi.14.4 24811783
    [Google Scholar]
  108. Sarkar S. Goldgar S. Byler S. Rosenthal S. Heerboth S. Demethylation and re-expression of epigenetically silenced tumor suppressor genes: sensitization of cancer cells by combination therapy. Epigenomics 2013 5 1 87 94 10.2217/epi.12.68 23414323
    [Google Scholar]
  109. Heerboth S. Lapinska K. Snyder N. Leary M. Rollinson S. Sarkar S. Use of epigenetic drugs in disease: an overview. Genet. Epigenet. 2014 6 9 19 10.4137/GEG.S12270 25512710
    [Google Scholar]
  110. Chou T.C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 2006 58 3 621 681 10.1124/pr.58.3.10 16968952
    [Google Scholar]
  111. Benko A. Nanocarrier drug resistant tumor interactions: novel approaches to fight drug resistance in cancer. Cancer Drug Resist. 2020 ••• 10.20517/cdr.2020.81 35582024
    [Google Scholar]
  112. Kumari S. Choudhary P.K. Shukla R. Sahebkar A. Kesharwani P. Recent advances in nanotechnology based combination drug therapy for skin cancer. J. Biomater. Sci. Polym. Ed. 2022 33 11 1435 1468 10.1080/09205063.2022.2054399 35294334
    [Google Scholar]
  113. Xin Y. Yin M. Zhao L. Meng F. Luo L. Recent progress on nanoparticle-based drug delivery systems for cancer therapy. Cancer Biol. Med. 2017 14 3 228 241 10.20892/j.issn.2095‑3941.2017.0052 28884040
    [Google Scholar]
  114. Li Z. Tan S. Li S. Shen Q. Wang K. Cancer drug delivery in the nano era: An overview and perspectives (Review). Oncol. Rep. 2017 38 2 611 624 10.3892/or.2017.5718 28627697
    [Google Scholar]
  115. Altun İ. Sonkaya A. The Most Common Side Effects Experienced by Patients Were Receiving First Cycle of Chemotherapy. Iran. J. Public Health 2018 47 8 1218 1219 30186799
    [Google Scholar]
  116. Anampa J. Makower D. Sparano J.A. Progress in adjuvant chemotherapy for breast cancer: an overview. BMC Med. 2015 13 1 195 10.1186/s12916‑015‑0439‑8 26278220
    [Google Scholar]
  117. Palmer A.C. Sorger P.K. Combination Cancer Therapy Can Confer Benefit via Patient-to-Patient Variability without Drug Additivity or Synergy. Cell 2017 171 7 1678 1691.e13 10.1016/j.cell.2017.11.009 29245013
    [Google Scholar]
  118. Kou X. Kirberger M. Yang Y. Chen N. Natural products for cancer prevention associated with Nrf2–ARE pathway. Food Sci. Hum. Wellness 2013 2 1 22 28 10.1016/j.fshw.2013.01.001
    [Google Scholar]
  119. Hortobagyi G.N. Ibrahim N. Paclitaxel-containing combination chemotherapy for metastatic breast cancer. Semin. Oncol. 1996 23 1 Suppl. 1 53 57 8629039
    [Google Scholar]
  120. Gadde S. Multi-drug delivery nanocarriers for combination therapy. MedChemComm 2015 6 11 1916 1929 10.1039/C5MD00365B
    [Google Scholar]
  121. Dasanu C.A. Herzog T.J. Alexandrescu D.T. Carboplatin-gemcitabine in the therapy of advanced ovarian cancer: dose reduction consideration. J. Oncol. Pharm. Pract. 2010 16 1 63 66 10.1177/1078155209105396 19525302
    [Google Scholar]
  122. Parhi P. Mohanty C. Sahoo S.K. Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy. Drug Discov. Today 2012 17 17-18 1044 1052 10.1016/j.drudis.2012.05.010 22652342
    [Google Scholar]
  123. Iyer A.K. Duan Z. Amiji M.M. Nanodelivery systems for nucleic acid therapeutics in drug resistant tumors. Mol. Pharm. 2014 11 8 2511 2526 10.1021/mp500024p 24661041
    [Google Scholar]
  124. Lee M.J. Ye A.S. Gardino A.K. Heijink A.M. Sorger P.K. MacBeath G. Yaffe M.B. Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks. Cell 2012 149 4 780 794 10.1016/j.cell.2012.03.031 22579283
    [Google Scholar]
  125. Wu M. Lin X. Tan X. Li J. Wei Z. Zhang D. Zheng Y. Zheng A.X. Zhao B. Zeng Y. Liu X. Liu J. Photoresponsive Nanovehicle for Two Independent Wavelength Light-Triggered Sequential Release of P-gp shRNA and Doxorubicin To Optimize and Enhance Synergistic Therapy of Multidrug-Resistant Cancer. ACS Appl. Mater. Interfaces 2018 10 23 19416 19427 10.1021/acsami.8b03823 29771490
    [Google Scholar]
  126. Li X. Peng X. Zoulikha M. Boafo G.F. Magar K.T. Ju Y. He W. Multifunctional nanoparticle-mediated combining therapy for human diseases. Signal Transduct. Target. Ther. 2024 9 1 1 10.1038/s41392‑023‑01668‑1 38161204
    [Google Scholar]
  127. Zhu M. Ding X. Zhao R. Liu X. Shen H. Cai C. Ferrari M. Wang H.Y. Wang R.F. Co-delivery of tumor antigen and dual toll-like receptor ligands into dendritic cell by silicon microparticle enables efficient immunotherapy against melanoma. J. Control. Release 2018 272 72 82 10.1016/j.jconrel.2018.01.004 29325699
    [Google Scholar]
  128. Cheng Z. Li M. Dey R. Chen Y. Nanomaterials for cancer therapy: current progress and perspectives. J. Hematol. Oncol. 2021 14 1 85 10.1186/s13045‑021‑01096‑0 34059100
    [Google Scholar]
  129. Sun L. Liu H. Ye Y. Lei Y. Islam R. Tan S. Tong R. Miao Y.B. Cai L. Smart nanoparticles for cancer therapy. Signal Transduct. Target. Ther. 2023 8 1 418 10.1038/s41392‑023‑01642‑x 37919282
    [Google Scholar]
  130. Ashique S. Garg A. Hussain A. Farid A. Kumar P. Taghizadeh-Hesary F. Nanodelivery systems: An efficient and target-specific approach for drug-resistant cancers. Cancer Med. 2023 12 18 18797 18825 10.1002/cam4.6502 37668041
    [Google Scholar]
  131. Sun X. Zhao P. Lin J. Chen K. Shen J. Recent advances in access to overcome cancer drug resistance by nanocarrier drug delivery system. Cancer Drug Resist. 2023 6 2 390 415 10.20517/cdr.2023.16 37457134
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018341670241124150932
Loading
/content/journals/cdd/10.2174/0115672018341670241124150932
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test