Skip to content
2000
image of Nanosystems for Intranasal Delivery of Therapeutics in Psychiatric Disorders

Abstract

Due to the blood-brain barrier (BBB) and issues with oral and other traditional routes of administration, psychiatric disorders present significant challenges in getting therapeutics into the brain. The nose-to-brain pathway, also known as intranasal delivery, has shown promise in overcoming these barriers since it targets the brain directly and bypasses the BBB. This review explores nanocarriers' potential for intranasal delivery of therapeutics in the treatment of psychiatric disorders. Nanocarriers, such as polymeric nanoparticles, liposomes, and nanoemulsions, offer unique advantages for enhancing the delivery of various therapeutic agents to the brain the intranasal route. The methodology involved conducting preliminary searches on databases such as PubMed, ScienceDirect, Web of Science, and Google Scholar using keywords related to “psychiatric disorders, intranasal delivery, nose-to-brain drug delivery, and nano formulations for intranasal delivery.” This review highlights the advantages of the intranasal drug delivery pathway as a non-invasive, reliable, and efficient method for targeting the brain by bypassing the BBB. Furthermore, it discusses the application of various novel nanocarrier-based formulations, including nanoparticles, in-situ gels, nano-emulsions, hydrogels, and liposomes, for the effective intranasal delivery of therapeutics in the treatment of psychiatric conditions such as mood and anxiety disorders schizophrenia, and other illnesses.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018336704241128101556
2025-01-10
2025-06-20
Loading full text...

Full text loading...

References

  1. Singh R.K. Prasad D.N. Bhardwaj T.R. Design, synthesis, chemical and biological evaluation of brain targeted alkylating agent using reversible redox prodrug approach. Arab. J. Chem. 2017 10 3 420 429 10.1016/j.arabjc.2013.12.008
    [Google Scholar]
  2. Singh R.K. Prasad D.N. Bhardwaj T.R. Design, synthesis and in vitro cytotoxicity study of benzodiazepine-mustard conjugates as potential brain anticancer agents. J. Saudi Chem. Soc. 2017 21 S86 S93 10.1016/j.jscs.2013.10.004
    [Google Scholar]
  3. Singh R.K. Prasad D.N. Bhardwaj T.R. Synthesis, physicochemical and kinetic studies of redox derivative of bis(2-chloroethylamine) as alkylating cytotoxic agent for brain delivery. Arab. J. Chem. 2015 8 3 380 387 10.1016/j.arabjc.2012.11.005
    [Google Scholar]
  4. Lofts A. Abu-Hijleh F. Rigg N. Mishra R.K. Hoare T. Using the intranasal route to administer drugs to treat neurological and psychiatric illnesses: Rationale, successes, and future needs. CNS Drugs 2022 36 7 739 770 10.1007/s40263‑022‑00930‑4 35759210
    [Google Scholar]
  5. Shafiee-Kandjani A.R. Asadi M. Farhang S. A matched case-control study of the serum level and gene expression of IL-6 and IL-12 in patients with schizophrenia spectrum disorder: An azeri acute phase/recent-onset psychosis survey (ARAS) study. Arch. Neurosci. 2024 11 2 10.5812/ans‑142694
    [Google Scholar]
  6. Shafiee-Kandjani A.R. Farhang S. Jafarzadeh Gharehziaaddin M. Carvalho S. Barzegar H. Effects of transcranial direct current stimulation (tDCS) on positive and negative symptoms in patients with schizophrenia. J Res Clin Med 2024 12 1 10 0 10.34172/jrcm.33356
    [Google Scholar]
  7. Zolfaghari S. Sarbaz Y. Shafiee-Kandjani A.R. Analysing the behaviour change of brain regions of methamphetamine abusers using electroencephalogram signals: Hope to design a decision support system. Addict. Biol. 2024 29 2 e13362 10.1111/adb.13362 38380772
    [Google Scholar]
  8. Herizchi S. Shafiee-Kandjani A.R. Farahbakhsh M. Jahangiri Z. Ghanbarzadeh Javid S. Azizi H. Efficacy of rivastigmine augmentation on positive and negative symptoms, general psychopathology, and quality of life in patients with chronic schizophrenia: A randomized controlled trial. Psychopharmacol. Bull. 2024 54 2 15 27 38601834
    [Google Scholar]
  9. Shafiee-Kandjani A.R. Nezhadettehad N. Farhang S. MicroRNAs and pro-inflammatory cytokines as candidate biomarkers for recent-onset psychosis. BMC Psychiatry 2023 23 1 631 10.1186/s12888‑023‑05136‑6 37644489
    [Google Scholar]
  10. Vitorino C. Silva S. Bicker J. Falcão A. Fortuna A. Antidepressants and nose-to-brain delivery: Drivers, restraints, opportunities and challenges. Drug Discov. Today 2019 24 9 1911 1923 10.1016/j.drudis.2019.06.001 31181188
    [Google Scholar]
  11. Donnelly R.F. Shaikh R. Raj Singh T.R. Garland M.J. Woolfson A.D. Mucoadhesive drug delivery systems. J. Pharm. Bioallied Sci. 2011 3 1 89 100 10.4103/0975‑7406.76478 21430958
    [Google Scholar]
  12. Wen M.M. Olfactory targeting through intranasal delivery of biopharmaceutical drugs to the brain: Current development. Discov. Med. 2011 11 61 497 503 21712015
    [Google Scholar]
  13. Crowe T.P. Greenlee M.H.W. Kanthasamy A.G. Hsu W.H. Mechanism of intranasal drug delivery directly to the brain. Life Sci. 2018 195 44 52 10.1016/j.lfs.2017.12.025 29277310
    [Google Scholar]
  14. Thorne R.G. Pronk G.J. Padmanabhan V. Frey W.H. II Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience 2004 127 2 481 496 10.1016/j.neuroscience.2004.05.029 15262337
    [Google Scholar]
  15. Miyake M.M. Bleier B.S. The blood-brain barrier and nasal drug delivery to the central nervous system. Am. J. Rhinol. Allergy 2015 29 2 124 127 10.2500/ajra.2015.29.4149 25785753
    [Google Scholar]
  16. Stefańczyk-Krzymowska S. Krzymowski T. Grzegorzewski W. Wasowska B. Skipor J. Humoral pathway for local transfer of the priming pheromone androstenol from the nasal cavity to the brain and hypophysis in anaesthetized gilts. Exp. Physiol. 2000 85 6 801 809 10.1017/S095806700002056X 11187974
    [Google Scholar]
  17. Skipor J. Grzegorzewski W. Einer-Jensen N. Wasowska B. Local vascular pathway for progesterone transfer to the brain after nasal administration in gilts. Reprod. Biol. 2003 3 2 143 159 14666138
    [Google Scholar]
  18. Einer-Jensen N. Hunter R.H.F. Counter-current transfer in reproductive biology. Reproduction 2005 129 1 9 18 10.1530/rep.1.00278 15615894
    [Google Scholar]
  19. Lochhead J.J. Wolak D.J. Pizzo M.E. Thorne R.G. Rapid transport within cerebral perivascular spaces underlies widespread tracer distribution in the brain after intranasal administration. J. Cereb. Blood Flow Metab. 2015 35 3 371 381 10.1038/jcbfm.2014.215 25492117
    [Google Scholar]
  20. Kumar S. Singh R.K. Murthy R.S.R. Bhardwaj T.R. Synthesis and evaluation of substituted poly (organophosphazenes) as a novel nanocarrier system for combined antimalarial therapy of primaquine and dihydroartemisinin. Pharm. Res. 2015 32 8 2736 2752 10.1007/s11095‑015‑1659‑5 25777611
    [Google Scholar]
  21. Kumar S. Design, synthesis and studies on novel polymeric prodrugs of erlotinib for colon drug delivery. Anticancer. Agents Med. Chem. 2021 21 3 383 392 10.2174/1871520620666200811124013
    [Google Scholar]
  22. Kumar S. Singh R.K. Sharma R. Murthy R.S.R. Bhardwaj T.R. Design, synthesis and evaluation of antimalarial potential of polyphosphazene linked combination therapy of primaquine and dihydroartemisinin. Eur. J. Pharm. Sci. 2015 66 123 137 10.1016/j.ejps.2014.09.023 25312346
    [Google Scholar]
  23. Brime B. Ballesteros M.P. Frutos P. Preparation and in vitro characterization of gelatin microspheres containing Levodopa for nasal administration. J. Microencapsul. 2000 17 6 777 784 10.1080/02652040050161765 11063424
    [Google Scholar]
  24. Ugwoke M. Agu R. Verbeke N. Kinget R. Nasal mucoadhesive drug delivery: Background, applications, trends and future perspectives. Adv. Drug Deliv. Rev. 2005 57 11 1640 1665 10.1016/j.addr.2005.07.009 16182408
    [Google Scholar]
  25. Abdelbary G.A. Tadros M.I. Brain targeting of olanzapine via intranasal delivery of core–shell difunctional block copolymer mixed nanomicellar carriers: In vitro characterization, ex vivo estimation of nasal toxicity and in vivo biodistribution studies. Int. J. Pharm. 2013 452 1-2 300 310 10.1016/j.ijpharm.2013.04.084 23684658
    [Google Scholar]
  26. Ugwoke M.I. Verbeke N. Kinget R. The biopharmaceutical aspects of nasal mucoadhesive drug delivery. J. Pharm. Pharmacol. 2001 53 1 3 21 10.1211/0022357011775145 11206189
    [Google Scholar]
  27. Cavalli R. Caputo O. Gasco M.R. Solid lipospheres of doxorubicin and idarubicin. Int. J. Pharm. 1993 89 1 R9 R12 10.1016/0378‑5173(93)90313‑5
    [Google Scholar]
  28. Müller R.H. Radtke M. Wissing S.A. Nanostructured lipid matrices for improved microencapsulation of drugs. Int. J. Pharm. 2002 242 1-2 121 128 10.1016/S0378‑5173(02)00180‑1 12176234
    [Google Scholar]
  29. Costantino L. Boraschi D. Is there a clinical future for polymeric nanoparticles as brain-targeting drug delivery agents? Drug Discov. Today 2012 17 7-8 367 378 10.1016/j.drudis.2011.10.028 22094246
    [Google Scholar]
  30. Chen Z.G. Small-molecule delivery by nanoparticles for anticancer therapy. Trends Mol. Med. 2010 16 12 594 602 10.1016/j.molmed.2010.08.001 20846905
    [Google Scholar]
  31. Patel T. Zhou J. Piepmeier J.M. Saltzman W.M. Polymeric nanoparticles for drug delivery to the central nervous system. Adv. Drug Deliv. Rev. 2012 64 7 701 705 10.1016/j.addr.2011.12.006 22210134
    [Google Scholar]
  32. Neha B. Ganesh B. Preeti K. Drug delivery to the brain using polymeric nanoparticles: a review. Int J Pharm Life Sci 2013 2 3 107 132 10.3329/ijpls.v2i3.15457
    [Google Scholar]
  33. Begines B. Ortiz T. Pérez-Aranda M. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials 2020 10 7 1403 10.3390/nano10071403 32707641
    [Google Scholar]
  34. Jeong S.H. Jang J.H. Lee Y.B. Oral delivery of topotecan in polymeric nanoparticles: Lymphatic distribution and pharmacokinetics. J. Control. Release 2021 335 86 102 10.1016/j.jconrel.2021.05.017 34015399
    [Google Scholar]
  35. Rai A. Jain A. Jain A. Targeted SLNs for management of HIV-1 associated dementia. Drug Dev. Ind. Pharm. 2015 41 8 1321 1327 10.3109/03639045.2014.948453 25113430
    [Google Scholar]
  36. Ganeshpurkar A. Chondroitin sulfate surface engineered docetaxel-loaded liposomes for tumor targeting: Design, development, and characterization. Proceedings of All India Seminar on Biomedical Engineering 2012 (AISOBE 2012) Springer India 2013 77 82 10.1007/978‑81‑322‑0970‑6_9
    [Google Scholar]
  37. Bansal D. Yadav K. Pandey V. Ganeshpurkar A. Agnihotri A. Dubey N. Lactobionic acid coupled liposomes: An innovative strategy for targeting hepatocellular carcinoma. Drug Deliv. 2016 23 1 140 146 10.3109/10717544.2014.907373 24786484
    [Google Scholar]
  38. Shah S. Patel A.A. Pandya V. Breaking barriers: Intranasal delivery of brexpiprazole-nanostructured lipid carriers targets the brain for effective schizophrenia treatment. J. Drug Deliv. Sci. Technol. 2023 90 105160 10.1016/j.jddst.2023.105160
    [Google Scholar]
  39. De R. Mahata M.K. Kim K.T. Structure‐based varieties of polymeric nanocarriers and influences of their physicochemical properties on drug delivery profiles. Adv. Sci. 2022 9 10 2105373 10.1002/advs.202105373 35112798
    [Google Scholar]
  40. Müller R.H. Mäder K. Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery - A review of the state of the art. Eur. J. Pharm. Biopharm. 2000 50 1 161 177 10.1016/S0939‑6411(00)00087‑4 10840199
    [Google Scholar]
  41. Mishra V. Bansal K.K. Verma A. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems. Pharmaceutics 2018 10 4 191 10.3390/pharmaceutics10040191 30340327
    [Google Scholar]
  42. Thi T.T.H. Suys E.J.A. Lee J.S. Nguyen D.H. Park K.D. Truong N.P. Lipid-based nanoparticles in the clinic and clinical trials: From cancer nanomedicine to COVID-19 vaccines. Vaccines 2021 9 4 359 10.3390/vaccines9040359 33918072
    [Google Scholar]
  43. Neves A.R. Queiroz J.F. Weksler B. Romero I.A. Couraud P.O. Reis S. Solid lipid nanoparticles as a vehicle for brain-targeted drug delivery: Two new strategies of functionalization with apolipoprotein E. Nanotechnology 2015 26 49 495103 10.1088/0957‑4484/26/49/495103 26574295
    [Google Scholar]
  44. Blasi P. Giovagnoli S. Schoubben A. Ricci M. Rossi C. Solid lipid nanoparticles for targeted brain drug delivery. Adv. Drug Deliv. Rev. 2007 59 6 454 477 10.1016/j.addr.2007.04.011 17570559
    [Google Scholar]
  45. Paliwal R. Paliwal S.R. Kenwat R. Kurmi B.D. Sahu M.K. Solid lipid nanoparticles: A review on recent perspectives and patents. Expert Opin. Ther. Pat. 2020 30 3 179 194 10.1080/13543776.2020.1720649 32003260
    [Google Scholar]
  46. Kumar M. Pathak K. Misra A. Formulation and characterization of nanoemulsion-based drug delivery system of risperidone. Drug Dev. Ind. Pharm. 2009 35 4 387 395 10.1080/03639040802363704 19016058
    [Google Scholar]
  47. Kumar M. Misra A. Babbar A.K. Mishra A.K. Mishra P. Pathak K. Intranasal nanoemulsion based brain targeting drug delivery system of risperidone. Int. J. Pharm. 2008 358 1-2 285 291 10.1016/j.ijpharm.2008.03.029 18455333
    [Google Scholar]
  48. Bahadur S. Pathak K. Buffered nanoemulsion for nose to brain delivery of ziprasidone hydrochloride: Preformulation and pharmacodynamic evaluation. Curr. Drug Deliv. 2012 9 6 596 607 10.2174/156720112803529792 22788695
    [Google Scholar]
  49. Chan J.M. Polymeric nanoparticles for drug delivery. Methods Protoc. 2010 624 163 175
    [Google Scholar]
  50. Asha Spandana K.M. Bhaskaran M. Karri V.V.S.N.R. Natarajan J. A comprehensive review of nano drug delivery system in the treatment of CNS disorders. J. Drug Deliv. Sci. Technol. 2020 57 101628 10.1016/j.jddst.2020.101628
    [Google Scholar]
  51. Kumari A. Yadav S.K. Yadav S.C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces 2010 75 1 1 18 10.1016/j.colsurfb.2009.09.001 19782542
    [Google Scholar]
  52. Makadia H.K. Siegel S.J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 2011 3 3 1377 1397 10.3390/polym3031377 22577513
    [Google Scholar]
  53. Soane R.J. Hinchcliffe M. Davis S.S. Illum L. Clearance characteristics of chitosan based formulations in the sheep nasal cavity. Int. J. Pharm. 2001 217 1-2 183 191 10.1016/S0378‑5173(01)00602‑0 11292554
    [Google Scholar]
  54. Tong G.F. Qin N. Sun L.W. Development and evaluation of Desvenlafaxine loaded PLGA-chitosan nanoparticles for brain delivery. Saudi Pharm. J. 2017 25 6 844 851 10.1016/j.jsps.2016.12.003 28951668
    [Google Scholar]
  55. Singh D. Rashid M. Hallan S.S. Mehra N.K. Prakash A. Mishra N. Pharmacological evaluation of nasal delivery of selegiline hydrochloride-loaded thiolated chitosan nanoparticles for the treatment of depression. Artif. Cells Nanomed. Biotechnol. 2016 44 3 865 877 26042481
    [Google Scholar]
  56. Fini A. Bergamante V. Ceschel G.C. Mucoadhesive gels designed for the controlled release of chlorhexidine in the oral cavity. Pharmaceutics 2011 3 4 665 679 10.3390/pharmaceutics3040665 24309302
    [Google Scholar]
  57. Aderibigbe B. In situ-based gels for nose to brain delivery for the treatment of neurological diseases. Pharmaceutics 2018 10 2 40 10.3390/pharmaceutics10020040 29601486
    [Google Scholar]
  58. Majithiya R.J. Ghosh P.K. Umrethia M.L. Murthy R.S.R. Thermoreversible-mucoadhesive Gel for nasal delivery of sumatriptan. AAPS PharmSciTech 2006 7 3 E80 E86 10.1208/pt070367 17025248
    [Google Scholar]
  59. Ur-Rehman T. Tavelin S. Gröbner G. Chitosan in situ gelation for improved drug loading and retention in poloxamer 407 gels. Int. J. Pharm. 2011 409 1-2 19 29 10.1016/j.ijpharm.2011.02.017 21335076
    [Google Scholar]
  60. El-Kamel A.H. In vitro and in vivo evaluation of Pluronic F127-based ocular delivery system for timolol maleate. Int. J. Pharm. 2002 241 1 47 55 10.1016/S0378‑5173(02)00234‑X 12086720
    [Google Scholar]
  61. Shin Y. Kokate R. Desai V. Bhushan A. Kaushal G. D-cycloserine nasal formulation development for anxiety disorders by using polymeric gels. Drug Discov. Ther. 2018 12 3 142 153 10.5582/ddt.2018.01017 29998995
    [Google Scholar]
  62. Sosnik A. Seremeta K. Polymeric hydrogels as technology platform for drug delivery applications. Gels 2017 3 3 25 10.3390/gels3030025 30920522
    [Google Scholar]
  63. Udupa N. Chonkar A. Nayak U. Smart polymers in nasal drug delivery. Indian J. Pharm. Sci. 2015 77 4 367 375 10.4103/0250‑474X.164770 26664051
    [Google Scholar]
  64. Chatterjee S. Chi-leung H.U.I.P. Review of stimuli-responsive polymers in drug delivery and textile application. Molecules 2019 24 14 2547 10.3390/molecules24142547 31336916
    [Google Scholar]
  65. Pathan IB More B Formulation and characterization of intra nasal delivery of nortriptyline hydrochloride thermoreversible gelling system in treatment of depression ACTA Pharmaceutica Sciencia 2017 55 2 35 10.23893/1307‑2080.APS.05510
    [Google Scholar]
  66. Naik A. Nair H. Formulation and evaluation of thermosensitive biogels for nose to brain delivery of doxepin. Biomed Res. Int. 2014 2014 847547 10.1155/2014/847547
    [Google Scholar]
  67. Gulshan S. Shah S. Shah P.A. Development and pharmacokinetic evaluation of novasomes for the trans-nasal delivery of fluvoxamine using arachidonic acid-carboxymethyl chitosan conjugate. Pharmaceutics 2023 15 9 2259 10.3390/pharmaceutics15092259 37765228
    [Google Scholar]
  68. Pandey Y.R. Kumar S. Gupta B.K. Ali J. Baboota S. Intranasal delivery of paroxetine nanoemulsion via the olfactory region for the management of depression: Formulation, behavioural and biochemical estimation. Nanotechnology 2016 27 2 025102 10.1088/0957‑4484/27/2/025102 26629830
    [Google Scholar]
  69. Sawant K. Pandey A. Patel S. Aripiprazole loaded poly(caprolactone) nanoparticles: Optimization and in vivo pharmacokinetics. Mater. Sci. Eng. C 2016 66 230 243 10.1016/j.msec.2016.04.089 27207059
    [Google Scholar]
  70. Baltzley S. Mohammad A. Malkawi A.H. Al-Ghananeem A.M. Intranasal drug delivery of olanzapine-loaded chitosan nanoparticles. AAPS PharmSciTech 2014 15 6 1598 1602 10.1208/s12249‑014‑0189‑5 25142821
    [Google Scholar]
  71. Seju U. Kumar A. Sawant K.K. Development and evaluation of olanzapine-loaded PLGA nanoparticles for nose-to-brain delivery: In vitro and in vivo studies. Acta Biomater. 2011 7 12 4169 4176 10.1016/j.actbio.2011.07.025 21839863
    [Google Scholar]
  72. Gadhave D.G. Tagalpallewar A.A. Kokare C.R. Agranulocytosis-protective olanzapine-loaded nanostructured lipid carriers engineered for CNS delivery: Optimization and hematological toxicity studies. AAPS PharmSciTech 2019 20 1 22 10.1208/s12249‑018‑1213‑y 30604305
    [Google Scholar]
  73. Boche M. Pokharkar V. Quetiapine nanoemulsion for intranasal drug delivery: Evaluation of brain-targeting efficiency. AAPS PharmSciTech 2017 18 3 686 696 10.1208/s12249‑016‑0552‑9 27207184
    [Google Scholar]
  74. Shah B. Khunt D. Misra M. Padh H. Non-invasive intranasal delivery of quetiapine fumarate loaded microemulsion for brain targeting: Formulation, physicochemical and pharmacokinetic consideration. Eur. J. Pharm. Sci. 2016 91 196 207 10.1016/j.ejps.2016.05.008 27174656
    [Google Scholar]
  75. Rukmangathen R. Yallamalli I.M. Yalavarthi P.R. Formulation and biopharmaceutical evaluation of risperidone-loaded chitosan nanoparticles for intranasal delivery. Drug Dev. Ind. Pharm. 2019 45 8 1342 1350 10.1080/03639045.2019.1619759 31094571
    [Google Scholar]
  76. Patel S. Chavhan S. Soni H. Brain targeting of risperidone-loaded solid lipid nanoparticles by intranasal route. J. Drug Target. 2011 19 6 468 474 10.3109/1061186X.2010.523787 20958095
    [Google Scholar]
  77. Pokharkar V. Suryawanshi S. Dhapte-Pawar V. Exploring micellar-based polymeric systems for effective nose-to-brain drug delivery as potential neurotherapeutics. Drug Deliv. Transl. Res. 2020 10 4 1019 1031 10.1007/s13346‑019‑00702‑6 31858442
    [Google Scholar]
  78. Piazza J. Hoare T. Molinaro L. Haloperidol-loaded intranasally administered lectin functionalized poly(ethylene glycol)–block-poly(d,l)-lactic-co-glycolic acid (PEG–PLGA) nanoparticles for the treatment of schizophrenia. Eur. J. Pharm. Biopharm. 2014 87 1 30 39 10.1016/j.ejpb.2014.02.007 24560967
    [Google Scholar]
  79. Shah B. Khunt D. Misra M. Padh H. Application of Box-Behnken design for optimization and development of quetiapine fumarate loaded chitosan nanoparticles for brain delivery via intranasal route*. Int. J. Biol. Macromol. 2016 89 206 218 10.1016/j.ijbiomac.2016.04.076 27130654
    [Google Scholar]
  80. Katare Y.K. Daya R.P. Sookram Gray C. Brain targeting of a water insoluble antipsychotic drug haloperidol via the intranasal route using PAMAM dendrimer. Mol. Pharm. 2015 12 9 3380 3388 10.1021/acs.molpharmaceut.5b00402 26226403
    [Google Scholar]
  81. Khallaf R.A. Aboud H.M. Sayed O.M. Surface modified niosomes of olanzapine for brain targeting via nasal route; preparation, optimization, and in vivo evaluation. J. Liposome Res. 2020 30 2 163 173 10.1080/08982104.2019.1610435 31039651
    [Google Scholar]
  82. Bari N.K. Fazil M. Hassan M.Q. Brain delivery of buspirone hydrochloride chitosan nanoparticles for the treatment of general anxiety disorder. Int. J. Biol. Macromol. 2015 81 49 59 10.1016/j.ijbiomac.2015.07.041 26210037
    [Google Scholar]
  83. Millan M.J. Gobert A. Lejeune F. The novel melatonin agonist agomelatine (S20098) is an antagonist at 5-hydroxytryptamine2C receptors, blockade of which enhances the activity of frontocortical dopaminergic and adrenergic pathways. J. Pharmacol. Exp. Ther. 2003 306 3 954 964 10.1124/jpet.103.051797 12750432
    [Google Scholar]
  84. Zupancic M. Guilleminault C. Agomelatine. CNS Drugs 2006 20 12 981 992 10.2165/00023210‑200620120‑00003 17140278
    [Google Scholar]
  85. Zaki N.M. Awad G.A. Mortada N.D. Abd ElHady S.S. Enhanced bioavailability of metoclopramide HCl by intranasal administration of a mucoadhesive in situ gel with modulated rheological and mucociliary transport properties. Eur. J. Pharm. Sci. 2007 32 4-5 296 307 10.1016/j.ejps.2007.08.006 17920822
    [Google Scholar]
  86. Fatouh A.M. Elshafeey A.H. Abdelbary A. Agomelatine-based in situ gels for brain targeting via the nasal route: Statistical optimization, in vitro, and in vivo evaluation. Drug Deliv. 2017 24 1 1077 1085 10.1080/10717544.2017.1357148 28745530
    [Google Scholar]
  87. Pund S. Rasve G. Borade G. Ex vivo permeation characteristics of venlafaxine through sheep nasal mucosa. Eur. J. Pharm. Sci. 2013 48 1-2 195 201 10.1016/j.ejps.2012.10.029 23159662
    [Google Scholar]
  88. Li J-C. Zhang W.J. Zhu J.X. Preparation and brain delivery of nasal solid lipid nanoparticles of quetiapine fumarate in situ gel in rat model of schizophrenia. Int. J. Clin. Exp. Med. 2015 8 10 17590 17600 26770349
    [Google Scholar]
  89. Pang L. Zhu S. Ma J. Intranasal temperature-sensitive hydrogels of cannabidiol inclusion complex for the treatment of post-traumatic stress disorder. Acta Pharm. Sin. B 2021 11 7 2031 2047 10.1016/j.apsb.2021.01.014 34386336
    [Google Scholar]
  90. Ravouru N. Kondreddy P. Korakanchi D.M.H. Formulation and evaluation of niosomal nasal drug delivery system of folic acid for brain targeting. Curr. Drug Discov. Technol. 2013 10 4 270 282 10.2174/15701638113109990031 23863098
    [Google Scholar]
  91. Costantino H.R. Illum L. Brandt G. Johnson P.H. Quay S.C. Intranasal delivery: Physicochemical and therapeutic aspects. Int. J. Pharm. 2007 337 1-2 1 24 10.1016/j.ijpharm.2007.03.025 17475423
    [Google Scholar]
  92. Madan J.R. Ghuge N.P. Dua K. Formulation and evaluation of proniosomes containing lornoxicam. Drug Deliv. Transl. Res. 2016 6 5 511 518 10.1007/s13346‑016‑0296‑9 27255375
    [Google Scholar]
  93. Patil V.S. Sutar K.P. Pockle R.D. Usulkar S. Jadhav V.A. Formulation, optimization and evaluation of amisulpride-loaded niosomal intranasal gel for brain targeting. Ther. Deliv. 2023 14 10 635 647 10.4155/tde‑2023‑0059 38050965
    [Google Scholar]
  94. Abdelbary G.A. Aburahma M.H. Oro-dental mucoadhesive proniosomal gel formulation loaded with lornoxicam for management of dental pain. J. Liposome Res. 2015 25 2 107 121 10.3109/08982104.2014.941861 25058447
    [Google Scholar]
  95. Mathure D. Madan J.R. Gujar K.N. Tupsamundre A. Ranpise H.A. Dua K. Formulation and evaluation of niosomal in situ nasal gel of a serotonin receptor agonist, buspirone hydrochloride for the brain delivery via intranasal route. Pharm. Nanotechnol. 2018 6 1 69 78 10.2174/2211738506666180130105919 29380709
    [Google Scholar]
  96. Sherje A.P. Londhe V. Development and evaluation of pH-responsive cyclodextrin-based in situ gel of paliperidone for intranasal delivery. AAPS PharmSciTech 2018 19 1 384 394 10.1208/s12249‑017‑0844‑8 28748368
    [Google Scholar]
  97. Donovan M.D. Flynn G.L. Amidon G.L. Absorption of polyethylene glycols 600 through 2000: The molecular weight dependence of gastrointestinal and nasal absorption. Pharm. Res. 1990 7 8 863 868 10.1023/A:1015921101465 2235883
    [Google Scholar]
  98. Merkus F.W.H.M. Verhoef J.C. Romeijn S.G. Schipper N.G.M. Interspecies differences in the nasal absorption of insulin. Pharm. Res. 1991 8 10 1343 3 10.1023/A:1015880502548 1796056
    [Google Scholar]
  99. Pisal S.S. Paradkar A.R. Mahadik K.R. Kadam S.S. Pluronic gels for nasal delivery of Vitamin B12. Part I: Preformulation study. Int. J. Pharm. 2004 270 1-2 37 45 10.1016/j.ijpharm.2003.10.005 14726120
    [Google Scholar]
  100. Morris G.A. Kök S.M. Harding S.E. Adams G.G. Polysaccharide drug delivery systems based on pectin and chitosan. Biotechnol. Genet. Eng. Rev. 2010 27 1 257 284 10.1080/02648725.2010.10648153 21415901
    [Google Scholar]
  101. Bhandwalkar M.J. Avachat A.M. Thermoreversible nasal in situ gel of venlafaxine hydrochloride: Formulation, characterization, and pharmacodynamic evaluation. AAPS PharmSciTech 2013 14 1 101 110 10.1208/s12249‑012‑9893‑1 23229381
    [Google Scholar]
  102. Gangane P. Design and optimization of venlafaxine niosomes loaded thermosensitive in-situ gel for prolonging intranasal residence in depressive disorder. 2024 10.21203/rs.3.rs‑5028833/v1
    [Google Scholar]
  103. Lofts A. Campea M.A. Winterhelt E. In situ-gelling hydrophobized starch nanoparticle-based nanoparticle network hydrogels for the effective delivery of intranasal olanzapine to treat brain disorders. Int. J. Biol. Macromol. 2024 277 Pt 4 134385 10.1016/j.ijbiomac.2024.134385 39111489
    [Google Scholar]
  104. Wermeling D.P. A response to the opioid overdose epidemic: Naloxone nasal spray. Drug Deliv. Transl. Res. 2013 3 1 63 74 10.1007/s13346‑012‑0092‑0 23734342
    [Google Scholar]
  105. Jo D.H. Kim J.H. Lee T.G. Kim J.H. Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomedicine 2015 11 7 1603 1611 10.1016/j.nano.2015.04.015 25989200
    [Google Scholar]
  106. He C. Hu Y. Yin L. Tang C. Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 2010 31 13 3657 3666 10.1016/j.biomaterials.2010.01.065 20138662
    [Google Scholar]
  107. Hersh A.M. Alomari S. Tyler B.M. Crossing the blood-brain barrier: Advances in nanoparticle technology for drug delivery in neuro-oncology. Int. J. Mol. Sci. 2022 23 8 4153 10.3390/ijms23084153 35456971
    [Google Scholar]
  108. Di J. Gao X. Du Y. Zhang H. Gao J. Zheng A. Size, shape, charge and “stealthy” surface: Carrier properties affect the drug circulation time in vivo. Asian J Pharm Sci 2021 16 4 444 458 10.1016/j.ajps.2020.07.005 34703494
    [Google Scholar]
  109. Lockman P.R. Koziara J.M. Mumper R.J. Allen D.D. Nanoparticle surface charges alter blood-brain barrier integrity and permeability. J. Drug Target. 2004 12 9-10 635 641 10.1080/10611860400015936 15621689
    [Google Scholar]
  110. Priya S. Desai V.M. Singhvi G. Surface modification of lipid-based nanocarriers: A potential approach to enhance targeted drug delivery. ACS Omega 2023 8 1 74 86 10.1021/acsomega.2c05976 36643539
    [Google Scholar]
  111. Nance E.A. A dense poly(ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue. Sci. Transl. Med. 2012 4 149 149ra119
    [Google Scholar]
  112. Sánchez-López E. Ettcheto M. Egea M.A. Memantine loaded PLGA PEGylated nanoparticles for alzheimer’s disease: In vitro and in vivo characterization. J. Nanobiotechnology 2018 16 1 32 10.1186/s12951‑018‑0356‑z 29587747
    [Google Scholar]
  113. Satapathy M.K. Yen T.L. Jan J.S. Solid lipid nanoparticles (SLNs): An advanced drug delivery system targeting brain through BBB. Pharmaceutics 2021 13 8 1183 10.3390/pharmaceutics13081183 34452143
    [Google Scholar]
  114. Zhi K. Raji B. Nookala A.R. PLGA nanoparticle-based formulations to cross the blood–brain barrier for drug delivery: From R&D to cGMP. Pharmaceutics 2021 13 4 500 10.3390/pharmaceutics13040500 33917577
    [Google Scholar]
  115. Baek J.S. Cho C.W. Surface modification of solid lipid nanoparticles for oral delivery of curcumin: Improvement of bioavailability through enhanced cellular uptake, and lymphatic uptake. Eur. J. Pharm. Biopharm. 2017 117 132 140 10.1016/j.ejpb.2017.04.013 28412471
    [Google Scholar]
  116. Zhang Y. Guo P. Ma Z. Lu P. Kebebe D. Liu Z. Combination of cell-penetrating peptides with nanomaterials for the potential therapeutics of central nervous system disorders: A review. J. Nanobiotechnology 2021 19 1 255 10.1186/s12951‑021‑01002‑3 34425832
    [Google Scholar]
  117. Halder J. Pradhan D. Kar B. Ghosh G. Rath G. Nanotherapeutics approaches to overcome P-glycoprotein-mediated multi-drug resistance in cancer. Nanomedicine 2022 40 102494 10.1016/j.nano.2021.102494 34775061
    [Google Scholar]
  118. Aderibigbe B.A. Naki T. Chitosan-based nanocarriers for nose to brain delivery. Appl. Sci. 2019 9 11 2219 10.3390/app9112219
    [Google Scholar]
  119. Mura P. Maestrelli F. Cirri M. Mennini N. Multiple roles of chitosan in mucosal drug delivery: An updated review. Mar. Drugs 2022 20 5 335 10.3390/md20050335 35621986
    [Google Scholar]
  120. Gänger S. Schindowski K. Tailoring formulations for intranasal nose-to-brain delivery: A review on architecture, physico-chemical characteristics and mucociliary clearance of the nasal olfactory mucosa. Pharmaceutics 2018 10 3 116 10.3390/pharmaceutics10030116 30081536
    [Google Scholar]
  121. Rassu G. Soddu E. Cossu M. Gavini E. Giunchedi P. Dalpiaz A. Particulate formulations based on chitosan for nose-to-brain delivery of drugs. A review. J. Drug Deliv. Sci. Technol. 2016 32 77 87 10.1016/j.jddst.2015.05.002
    [Google Scholar]
  122. Jalloh M. Esketamine (spravato) for treatment-resistant depression. Am. Fam. Physician 2020 101 6 339 340 32163257
    [Google Scholar]
  123. Guastella A.J. Howard A.L. Dadds M.R. Mitchell P. Carson D.S. A randomized controlled trial of intranasal oxytocin as an adjunct to exposure therapy for social anxiety disorder. Psychoneuroendocrinology 2009 34 6 917 923 10.1016/j.psyneuen.2009.01.005 19246160
    [Google Scholar]
  124. Mayer A.V. Wermter A.K. Stroth S. Randomized clinical trial shows no substantial modulation of empathy-related neural activation by intranasal oxytocin in autism. Sci. Rep. 2021 11 1 15056 10.1038/s41598‑021‑94407‑x 34301983
    [Google Scholar]
  125. Yamasue H. Okada T. Munesue T. Effect of intranasal oxytocin on the core social symptoms of autism spectrum disorder: A randomized clinical trial. Mol. Psychiatry 2020 25 8 1849 1858 10.1038/s41380‑018‑0097‑2 29955161
    [Google Scholar]
  126. Daly E.J. Singh J.B. Fedgchin M. Efficacy and safety of intranasal esketamine adjunctive to oral antidepressant therapy in treatment-resistant depression: A randomized clinical trial. JAMA Psychiatry 2018 75 2 139 148 10.1001/jamapsychiatry.2017.3739 29282469
    [Google Scholar]
  127. Hosseini Jahromi S.A. Hosseini Valami S.M. Adeli N. Yazdi Z. Comparison of the effects of intranasal midazolam versus different doses of intranasal ketamine on reducing preoperative pediatric anxiety: A prospective randomized clinical trial. J. Anesth. 2012 26 6 878 882 10.1007/s00540‑012‑1422‑6 22688444
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018336704241128101556
Loading
/content/journals/cdd/10.2174/0115672018336704241128101556
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test