Skip to content
2000
image of Nanoparticle-Mediated Transcytosis in Tumor Drug Delivery: Mechanisms, Categories, and Novel Applications

Abstract

The development of nanotechnology-based drug delivery systems has been extensively investigated across various therapies, leading to the creation of numerous nanomedicines for clinical use. However, these nanomedicines have yet to achieve the anticipated therapeutic efficacy in clinical settings, highlighting the urgent need for further research in this area. A primary challenge in nanomedicine research lies in ensuring that nanoparticles and therapeutic agents can effectively penetrate and accumulate within tumors. The enhanced permeability and retention (EPR) effect has been previously explored as a means to enhance drug delivery to tumors, but recent findings have revealed its limitations, including variable responses, restricted penetration, clearance by the reticuloendothelial system, and non-specific accumulation. As an alternative approach, transcytosis has been explored for delivering drugs to specific organs or tissues, potentially bypassing some of the constraints of the EPR effect. For example, nanoparticles can be guided through barriers by targeting specific receptors on cell surfaces or by utilizing a different charge compared to tumor cells' surfaces. Therefore, this article explores transcytosis, including adsorptive, receptor-mediated, and cell-mediated subtypes, all of which have demonstrated promising results and offer potential solutions to enhance the effectiveness of nanomedicine delivery for cancer therapy.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018336038240930082554
2024-10-14
2025-01-22
Loading full text...

Full text loading...

References

  1. Khan I. Saeed K. Khan I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019 12 7 908 931 10.1016/j.arabjc.2017.05.011
    [Google Scholar]
  2. Sun Q. Zhou Z. Qiu N. Shen Y. Rational design of cancer nanomedicine: Nanoproperty integration and synchronization. Adv. Mater. 2017 29 14 1606628 10.1002/adma.201606628 28234430
    [Google Scholar]
  3. Ding S. Khan A.I. Cai X. Song Y. Lyu Z. Du D. Dutta P. Lin Y. Overcoming blood–brain barrier transport: Advances in nanoparticle-based drug delivery strategies. Mater. Today 2020 37 112 125 10.1016/j.mattod.2020.02.001 33093794
    [Google Scholar]
  4. Nakamura Y. Mochida A. Choyke P.L. Kobayashi H. Nanodrug delivery: Is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug. Chem. 2016 27 10 2225 2238 10.1021/acs.bioconjchem.6b00437 27547843
    [Google Scholar]
  5. Prabhakar U. Maeda H. Jain R.K. Sevick-Muraca E.M. Zamboni W. Farokhzad O.C. Barry S.T. Gabizon A. Grodzinski P. Blakey D.C. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 2013 73 8 2412 2417 10.1158/0008‑5472.CAN‑12‑4561
    [Google Scholar]
  6. Fung K.Y.Y. Fairn G.D. Lee W.L. Transcellular vesicular transport in epithelial and endothelial cells: Challenges and opportunities. Traffic 2018 19 1 5 18 10.1111/tra.12533 28985008
    [Google Scholar]
  7. Li Z. Shan X. Chen Z. Gao N. Zeng W. Zeng X. Mei L. Applications of surface modification technologies in nanomedicine for deep tumor penetration. Adv. Sci. (Weinh.) 2021 8 1 2002589 10.1002/advs.202002589 33437580
    [Google Scholar]
  8. Sakhtianchi R. Minchin R.F. Lee K.B. Alkilany A.M. Serpooshan V. Mahmoudi M. Exocytosis of nanoparticles from cells: Role in cellular retention and toxicity. Adv. Colloid Interface Sci. 2013 201-202 18 29 10.1016/j.cis.2013.10.013 24200091
    [Google Scholar]
  9. Zhou Q. Dong C. Fan W. Jiang H. Xiang J. Qiu N. Piao Y. Xie T. Luo Y. Li Z. Liu F. Shen Y. Tumor extravasation and infiltration as barriers of nanomedicine for high efficacy: The current status and transcytosis strategy. Biomaterials 2020 240 119902 10.1016/j.biomaterials.2020.119902 32105817
    [Google Scholar]
  10. Pawar B. Vasdev N. Gupta T. Mhatre M. More A. Anup N. Tekade R.K. Current update on transcellular brain drug delivery. Pharmaceutics 2022 14 12 2719 10.3390/pharmaceutics14122719 36559214
    [Google Scholar]
  11. Andreone B.J. Chow B.W. Tata A. Lacoste B. Ben-Zvi A. Bullock K. Deik A.A. Ginty D.D. Clish C.B. Gu C. Blood-brain barrier permeability is regulated by lipid transport-dependent suppression of caveolae-mediated transcytosis. Neuron 2017 94 3 581 594.e5 10.1016/j.neuron.2017.03.043 28416077
    [Google Scholar]
  12. Thuenauer R. Müller S.K. Römer W. Pathways of protein and lipid receptor-mediated transcytosis in drug delivery. Expert Opin. Drug Deliv. 2017 14 3 341 351 10.1080/17425247.2016.1220364 27500785
    [Google Scholar]
  13. Izci M. Maksoudian C. Manshian B.B. Soenen S.J. The use of alternative strategies for enhanced nanoparticle delivery to solid tumors. Chem. Rev. 2021 121 3 1746 1803 10.1021/acs.chemrev.0c00779 33445874
    [Google Scholar]
  14. Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv. Drug Deliv. Rev. 2011 63 3 131 135 10.1016/j.addr.2010.03.011 20304019
    [Google Scholar]
  15. Zi Y. Yang K. He J. Wu Z. Liu J. Zhang W. Strategies to enhance drug delivery to solid tumors by harnessing the EPR effects and alternative targeting mechanisms. Adv. Drug Deliv. Rev. 2022 188 114449 10.1016/j.addr.2022.114449 35835353
    [Google Scholar]
  16. Sindhwani S. Syed A.M. Ngai J. Kingston B.R. Maiorino L. Rothschild J. MacMillan P. Zhang Y. Rajesh N.U. Hoang T. Wu J.L.Y. Wilhelm S. Zilman A. Gadde S. Sulaiman A. Ouyang B. Lin Z. Wang L. Egeblad M. Chan W.C.W. The entry of nanoparticles into solid tumours. Nat. Mater. 2020 19 5 566 575 10.1038/s41563‑019‑0566‑2 31932672
    [Google Scholar]
  17. Dasgupta A. Sofias A.M. Kiessling F. Lammers T. Nanoparticle delivery to tumours: From EPR and ATR mechanisms to clinical impact. Nat. Rev. Bioeng. 2024 2 9 1 3 10.1038/s44222‑024‑00203‑3
    [Google Scholar]
  18. Petros R.A. DeSimone J.M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 2010 9 8 615 627 10.1038/nrd2591 20616808
    [Google Scholar]
  19. Zhao J. Stenzel M.H. Entry of nanoparticles into cells: The importance of nanoparticle properties. Polym. Chem. 2018 9 3 259 272 10.1039/C7PY01603D
    [Google Scholar]
  20. Lin X.P. Mintern J.D. Gleeson P.A. Macropinocytosis in different cell types: Similarities and differences. Membranes (Basel) 2020 10 8 177 10.3390/membranes10080177 32756454
    [Google Scholar]
  21. Harush-Frenkel O. Rozentur E. Benita S. Altschuler Y. Surface charge of nanoparticles determines their endocytic and transcytotic pathway in polarized MDCK cells. Biomacromolecules 2008 9 2 435 443 10.1021/bm700535p 18189360
    [Google Scholar]
  22. Donahue N.D. Acar H. Wilhelm S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv. Drug Deliv. Rev. 2019 143 68 96 10.1016/j.addr.2019.04.008 31022434
    [Google Scholar]
  23. Mulvihill J.J.E. Cunnane E.M. Ross A.M. Duskey J.T. Tosi G. Grabrucker A.M. Drug delivery across the blood-brain barrier: Recent advances in the use of nanocarriers. Nanomedicine (Lond.) 2020 15 2 205 214 10.2217/nnm‑2019‑0367 31916480
    [Google Scholar]
  24. Zhou Q. Li J. Xiang J. Shao S. Zhou Z. Tang J. Shen Y. Transcytosis-enabled active extravasation of tumor nanomedicine. Adv. Drug Deliv. Rev. 2022 189 114480 10.1016/j.addr.2022.114480 35952830
    [Google Scholar]
  25. Yameen B. Choi W.I. Vilos C. Swami A. Shi J. Farokhzad O.C. Insight into nanoparticle cellular uptake and intracellular targeting. J. Control. Release 2014 190 485 499 10.1016/j.jconrel.2014.06.038 24984011
    [Google Scholar]
  26. Ozcan L. Tabas I. Role of endoplasmic reticulum stress in metabolic disease and other disorders. Annu. Rev. Med. 2012 63 1 317 328 10.1146/annurev‑med‑043010‑144749 22248326
    [Google Scholar]
  27. Wang S. Ma Z. Xu X. Wang Z. Sun L. Zhou Y. Lin X. Hong W. Wang T. A role of Rab29 in the integrity of the trans-Golgi network and retrograde trafficking of mannose-6-phosphate receptor. PLoS One 2014 9 5 e96242 10.1371/journal.pone.0096242 24788816
    [Google Scholar]
  28. Qin M. Zhang J. Li M. Yang D. Liu D. Song S. Fu J. Zhang H. Dai W. Wang X. Wang Y. He B. Zhang Q. Proteomic analysis of intracellular protein corona of nanoparticles elucidates nano-trafficking network and nano-bio interactions. Theranostics 2020 10 3 1213 1229 10.7150/thno.38900 31938061
    [Google Scholar]
  29. Simionescu M. Popov D. Sima A. Endothelial transcytosis in health and disease. Cell Tissue Res. 2009 335 1 27 40 10.1007/s00441‑008‑0688‑3 18836747
    [Google Scholar]
  30. Wiley D.T. Webster P. Gale A. Davis M.E. Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor. Proc. Natl. Acad. Sci. USA 2013 110 21 8662 8667 10.1073/pnas.1307152110 23650374
    [Google Scholar]
  31. Zhang W. Liu Q.Y. Haqqani A.S. Leclerc S. Liu Z. Fauteux F. Baumann E. Delaney C.E. Ly D. Star A.T. Brunette E. Sodja C. Hewitt M. Sandhu J.K. Stanimirovic D.B. Differential expression of receptors mediating receptor-mediated transcytosis (RMT) in brain microvessels, brain parenchyma and peripheral tissues of the mouse and the human. Fluids Barriers CNS 2020 17 1 47 10.1186/s12987‑020‑00209‑0 32698806
    [Google Scholar]
  32. Pardridge W.M. Kinetics of Blood–Brain Barrier Transport of Monoclonal Antibodies Targeting the Insulin Receptor and the Transferrin Receptor. Pharmaceuticals (Basel) 2021 15 1 3 10.3390/ph15010003 35056060
    [Google Scholar]
  33. Clarke E. Sinclair L. Fletcher E.J. Krawczun-Rygmaczewska A. Duty S. Stocki P. Rutowski J.L. Doherty D.L. Walsh F.S. A single domain shark antibody targeting the transferrin receptor 1 delivers a TrkB agonist antibody across the blood brain barrier to provide full neuroprotection in a mouse model of Parkinson’s Disease. bioRxiv 2020 2020.03 10.1101/2020.03.12.987313
    [Google Scholar]
  34. Dubey S.K. Lakshmi K.K. Krishna K.V. Agrawal M. Singhvi G. Saha R.N. Saraf S. Saraf S. Shukla R. Alexander A. Insulin mediated novel therapies for the treatment of Alzheimer’s disease. Life Sci. 2020 249 117540 10.1016/j.lfs.2020.117540 32165212
    [Google Scholar]
  35. Lee J.H. Jahrling J.B. Denner L. Dineley K.T. Targeting insulin for Alzheimer’s disease: Mechanisms, status and potential directions. J. Alzheimers Dis. 2018 64 s1 S427 S453 10.3233/JAD‑179923 29710715
    [Google Scholar]
  36. Li H. Gong Q. Luo K. Biomarker-driven molecular imaging probes in radiotherapy. Theranostics 2024 14 10 4127 4146 10.7150/thno.97768 38994026
    [Google Scholar]
  37. Chang J. Paillard A. Passirani C. Morille M. Benoit J.P. Betbeder D. Garcion E. Transferrin adsorption onto PLGA nanoparticles governs their interaction with biological systems from blood circulation to brain cancer cells. Pharm. Res. 2012 29 6 1495 1505 10.1007/s11095‑011‑0624‑1 22167349
    [Google Scholar]
  38. Clark A.J. Davis M.E. Increased brain uptake of targeted nanoparticles by adding an acid-cleavable linkage between transferrin and the nanoparticle core. Proc. Natl. Acad. Sci. USA 2015 112 40 12486 12491 10.1073/pnas.1517048112 26392563
    [Google Scholar]
  39. Ruan S. Qin L. Xiao W. Hu C. Zhou Y. Wang R. Sun X. Yu W. He Q. Gao H. Acid‐responsive transferrin dissociation and GLUT mediated exocytosis for increased blood–brain barrier transcytosis and programmed glioma targeting delivery. Adv. Funct. Mater. 2018 28 30 1802227 10.1002/adfm.201802227
    [Google Scholar]
  40. Qiao C. Yang J. Shen Q. Liu R. Li Y. Shi Y. Chen J. Shen Y. Xiao Z. Weng J. Zhang X. Traceable nanoparticles with dual targeting and ROS response for RNAi‐based immunochemotherapy of intracranial glioblastoma treatment. Adv. Mater. 2018 30 18 1705054 10.1002/adma.201705054 29577457
    [Google Scholar]
  41. Regina A. Demeule M. Tripathy S. Lord-Dufour S. Currie J.C. Iddir M. Annabi B. Castaigne J.P. Lachowicz J.E. ANG4043, a novel brain-penetrant peptide-mAb conjugate, is efficacious against HER2-positive intracranial tumors in mice. Mol. Cancer Ther. 2015 14 1 129 140 10.1158/1535‑7163.MCT‑14‑0399 25492620
    [Google Scholar]
  42. Li H. Qian Z.M. Transferrin/transferrin receptor‐mediated drug delivery. Med. Res. Rev. 2002 22 3 225 250 10.1002/med.10008 11933019
    [Google Scholar]
  43. Kawabata H. Transferrin and transferrin receptors update. Free Radic. Biol. Med. 2019 133 46 54 10.1016/j.freeradbiomed.2018.06.037 29969719
    [Google Scholar]
  44. Matsui M. Sakurai F. Elbashir S. Foster D.J. Manoharan M. Corey D.R. Activation of LDL receptor expression by small RNAs complementary to a noncoding transcript that overlaps the LDLR promoter. Chem. Biol. 2010 17 12 1344 1355 10.1016/j.chembiol.2010.10.009 21168770
    [Google Scholar]
  45. Shen G.Q. Li L. Girelli D. Seidelmann S.B. Rao S. Fan C. Park J.E. Xi Q. Li J. Hu Y. Olivieri O. Marchant K. Barnard J. Corrocher R. Elston R. Cassano J. Henderson S. Hazen S.L. Plow E.F. Topol E.J. Wang Q.K. An LRP8 variant is associated with familial and premature coronary artery disease and myocardial infarction. Am. J. Hum. Genet. 2007 81 4 780 791 10.1086/521581 17847002
    [Google Scholar]
  46. von Wolff M. Ursel S. Hahn U. Steldinger R. Strowitzki T. Glucose transporter proteins (GLUT) in human endometrium: Expression, regulation, and function throughout the menstrual cycle and in early pregnancy. J. Clin. Endocrinol. Metab. 2003 88 8 3885 3892 10.1210/jc.2002‑021890 12915684
    [Google Scholar]
  47. Korgun E.T. Celik-Ozenci C. Seval Y. Desoye G. Demir R. Do glucose transporters have other roles in addition to placental glucose transport during early pregnancy? Histochem. Cell Biol. 2005 123 6 621 629 10.1007/s00418‑005‑0792‑3 15965666
    [Google Scholar]
  48. Yeh W.L. Lin C.J. Fu W.M. Enhancement of glucose transporter expression of brain endothelial cells by vascular endothelial growth factor derived from glioma exposed to hypoxia. Mol. Pharmacol. 2008 73 1 170 177 10.1124/mol.107.038851 17942749
    [Google Scholar]
  49. Chaudhary B. Khaled Y.S. Ammori B.J. Elkord E. Neuropilin 1: Function and therapeutic potential in cancer. Cancer Immunol. Immunother. 2014 63 2 81 99 10.1007/s00262‑013‑1500‑0 24263240
    [Google Scholar]
  50. Liu S.D. Zhong L.P. He J. Zhao Y.X. Targeting neuropilin-1 interactions is a promising anti-tumor strategy. Chin. Med. J. (Engl.) 2021 134 5 508 517 10.1097/CM9.0000000000001200 33177389
    [Google Scholar]
  51. Miao H.Q. Lee P. Lin H. Soker S. Klagsbrun M. Neuropilin‐1 expression by tumor cells promotes tumor angiogenesis and progression. FASEB J. 2000 14 15 2532 2539 10.1096/fj.00‑0250com 11099472
    [Google Scholar]
  52. Mütze J. Roth J. Gerstberger R. Matsumura K. Hübschle T. Immunohistochemical evidence of functional leptin receptor expression in neuronal and endothelial cells of the rat brain. Neurosci. Lett. 2006 394 2 105 110 10.1016/j.neulet.2005.10.031 16289843
    [Google Scholar]
  53. Cantero D. Friess H. Deflorin J. Zimmermann A. Bründler M-A. Riesle E. Korc M. Büchler M.W. Enhanced expression of urokinase plasminogen activator and its receptor in pancreatic carcinoma. Br. J. Cancer 1997 75 3 388 395 10.1038/bjc.1997.63 9020484
    [Google Scholar]
  54. DiLucia S.G. Kendrick B.J. Sims-Robinson C. Hyperinsulinemia impairs clathrin-mediated endocytosis of the insulin receptor and activation of endothelial nitric oxide synthase in brain endothelial cells. Int. J. Mol. Sci. 2023 24 19 14670 10.3390/ijms241914670 37834116
    [Google Scholar]
  55. Soni U.K. Jenny L. Hegde R.S. IGF-1R targeting in cancer – Does sub-cellular localization matter? J. Exp. Clin. Cancer Res. 2023 42 1 273 10.1186/s13046‑023‑02850‑7 37858153
    [Google Scholar]
  56. Martins A.S. Ordóñez J.L. Amaral A.T. Prins F. Floris G. Debiec-Rychter M. Hogendoorn P.C.W. de Alava E. IGF1R signaling in Ewing sarcoma is shaped by clathrin-/caveolin-dependent endocytosis. PLoS One 2011 6 5 e19846 10.1371/journal.pone.0019846 21611203
    [Google Scholar]
  57. Song X. Li R. Deng H. Li Y. Cui Y. Zhang H. Dai W. He B. Zheng Y. Wang X. Zhang Q. Receptor mediated transcytosis in biological barrier: The influence of receptor character and their ligand density on the transmembrane pathway of active-targeting nanocarriers. Biomaterials 2018 180 78 90 10.1016/j.biomaterials.2018.07.006 30025247
    [Google Scholar]
  58. Lu W. Adsorptive-mediated brain delivery systems. Curr. Pharm. Biotechnol. 2012 13 12 2340 2348 10.2174/138920112803341851 23016640
    [Google Scholar]
  59. Kucharz K. Kutuzov N. Zhukov O. Mathiesen Janiurek M. Lauritzen M. Shedding light on the Blood–Brain barrier transport with Two-Photon microscopy in vivo. Pharm. Res. 2022 39 7 1457 1468 10.1007/s11095‑022‑03266‑2 35578062
    [Google Scholar]
  60. Chacko J.B. Jose S. Chapter 9 - PLGA-based nanoparticles for treatment of cerebral diseases. Poly(lactic-co-glycolic acid) (PLGA) Nanoparticles for Drug Delivery Elsevier 2023 235 266 10.1016/B978‑0‑323‑91215‑0.00018‑2
    [Google Scholar]
  61. Zhou Q. Shao S. Wang J. Xu C. Xiang J. Piao Y. Zhou Z. Yu Q. Tang J. Liu X. Gan Z. Mo R. Gu Z. Shen Y. Enzyme-activatable polymer–drug conjugate augments tumour penetration and treatment efficacy. Nat. Nanotechnol. 2019 14 8 799 809 10.1038/s41565‑019‑0485‑z 31263194
    [Google Scholar]
  62. Suzuki H. Bae Y.H. Evaluation of drug penetration with cationic micelles and their penetration mechanism using an in vitro tumor model. Biomaterials 2016 98 120 130 10.1016/j.biomaterials.2016.04.037 27182814
    [Google Scholar]
  63. Li J. Kataoka K. Chemo-physical strategies to advance the in vivo functionality of targeted nanomedicine: The next generation. J. Am. Chem. Soc. 2021 143 2 538 559 10.1021/jacs.0c09029 33370092
    [Google Scholar]
  64. Chen S. Zhong Y. Fan W. Xiang J. Wang G. Zhou Q. Wang J. Geng Y. Sun R. Zhang Z. Piao Y. Wang J. Zhuo J. Cong H. Jiang H. Ling J. Li Z. Yang D. Yao X. Xu X. Zhou Z. Tang J. Shen Y. Enhanced tumour penetration and prolonged circulation in blood of polyzwitterion–drug conjugates with cell-membrane affinity. Nat. Biomed. Eng. 2021 5 9 1019 1037 10.1038/s41551‑021‑00701‑4 33859387
    [Google Scholar]
  65. Lalatsa A. Schatzlein A.G. Uchegbu I.F. Strategies to deliver peptide drugs to the brain. Mol. Pharm. 2014 11 4 1081 1093 10.1021/mp400680d 24601686
    [Google Scholar]
  66. Hasannejad-Asl B. Pooresmaeil F. Takamoli S. Dabiri M. Bolhassani A. Cell penetrating peptide: A potent delivery system in vaccine development. Front. Pharmacol. 2022 13 1072685 10.3389/fphar.2022.1072685 36425579
    [Google Scholar]
  67. Lu W. Zhang Y. Tan Y.Z. Hu K.L. Jiang X.G. Fu S.K. Cationic albumin-conjugated pegylated nanoparticles as novel drug carrier for brain delivery. J. Control. Release 2005 107 3 428 448 10.1016/j.jconrel.2005.03.027 16176844
    [Google Scholar]
  68. Arvizo R.R. Miranda O.R. Moyano D.F. Walden C.A. Giri K. Bhattacharya R. Robertson J.D. Rotello V.M. Reid J.M. Mukherjee P. Modulating pharmacokinetics, tumor uptake and biodistribution by engineered nanoparticles. PLoS One 2011 6 9 e24374 10.1371/journal.pone.0024374 21931696
    [Google Scholar]
  69. Schwartz S. Unmet needs in developing nanoparticles for precision medicine. Nanomedicine (Lond) 2017 12 4 271 274 10.2217/nnm‑2016‑0390 28093937
    [Google Scholar]
  70. Suk J.S. Xu Q. Kim N. Hanes J. Ensign L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016 99 Pt A 28 51 10.1016/j.addr.2015.09.012 26456916
    [Google Scholar]
  71. Ali I.U. Chen X. Penetrating the blood–brain barrier: Promise of novel nanoplatforms and delivery vehicles. ACS Nano 2015 9 10 9470 9474 10.1021/acsnano.5b05341 26406936
    [Google Scholar]
  72. Cheng Y. Morshed R. Cheng S.H. Tobias A. Auffinger B. Wainwright D.A. Zhang L. Yunis C. Han Y. Chen C.T. Lo L.W. Aboody K.S. Ahmed A.U. Lesniak M.S. Nanoparticle-programmed self-destructive neural stem cells for glioblastoma targeting and therapy. Small 2013 9 24 4123 4129 10.1002/smll.201301111 23873826
    [Google Scholar]
  73. Xue J. Zhao Z. Zhang L. Xue L. Shen S. Wen Y. Wei Z. Wang L. Kong L. Sun H. Ping Q. Mo R. Zhang C. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence. Nat. Nanotechnol. 2017 12 7 692 700 10.1038/nnano.2017.54 28650441
    [Google Scholar]
  74. Wu M. Zhang H. Tie C. Yan C. Deng Z. Wan Q. Liu X. Yan F. Zheng H. MR imaging tracking of inflammation-activatable engineered neutrophils for targeted therapy of surgically treated glioma. Nat. Commun. 2018 9 1 4777 10.1038/s41467‑018‑07250‑6 30429468
    [Google Scholar]
  75. Khatami S.H. Karami N. Taheri-Anganeh M. Taghvimi S. Tondro G. Khorsand M. Soltani Fard E. Sedighimehr N. Kazemi M. Rahimi Jaberi K. Moradi M. Nafisi Fard P. Darvishi M.H. Movahedpour A. Exosomes: Promising delivery tools for overcoming blood-brain barrier and glioblastoma therapy. Mol. Neurobiol. 2023 60 8 4659 4678 10.1007/s12035‑023‑03365‑0 37138197
    [Google Scholar]
  76. Rehman F.U. Liu Y. Zheng M. Shi B. Exosomes based strategies for brain drug delivery. Biomaterials 2023 293 121949 10.1016/j.biomaterials.2022.121949 36525706
    [Google Scholar]
  77. Bor G. Hosta-Rigau L. Next generation of brain cancer nanomedicines to overcome the Blood–Brain Barrier (BBB): Insights on transcytosis, perivascular tumor growth, and BBB models. Adv. Ther. (Weinh.) 2023 6 12 2300161 10.1002/adtp.202300161
    [Google Scholar]
  78. Kim R. Lee S. Lee J. Kim M. Kim W.J. Lee H.W. Lee M.Y. Kim J. Chang W. Exosomes derived from microRNA-584 transfected mesenchymal stem cells: Novel alternative therapeutic vehicles for cancer therapy. BMB Rep. 2018 51 8 406 411 10.5483/BMBRep.2018.51.8.105 29966581
    [Google Scholar]
  79. Vader P. Mol E.A. Pasterkamp G. Schiffelers R.M. Extracellular vesicles for drug delivery. Adv. Drug Deliv. Rev. 2016 106 Pt A 148 156 10.1016/j.addr.2016.02.006 26928656
    [Google Scholar]
  80. Morad G. Carman C.V. Hagedorn E.J. Perlin J.R. Zon L.I. Mustafaoglu N. Park T.E. Ingber D.E. Daisy C.C. Moses M.A. Tumor-derived extracellular vesicles breach the intact blood–brain barrier via transcytosis. ACS Nano 2019 13 12 13853 13865 10.1021/acsnano.9b04397 31479239
    [Google Scholar]
  81. Zhu X. Jin K. Huang Y. Pang Z. Brain drug delivery by adsorption-mediated transcytosis. Brain Targeted Drug Delivery System. Elsevier 2019 159 183 10.1016/B978‑0‑12‑814001‑7.00007‑X
    [Google Scholar]
  82. Vyas S.P. Singh A. Sihorkar V. Ligand-receptor-mediated drug delivery: An emerging paradigm in cellular drug targeting. Crit. Rev. Ther. Drug Carrier Syst. 2001 18 1 1 76 10.1615/CritRevTherDrugCarrierSyst.v18.i1.10 11326743
    [Google Scholar]
  83. Luk B.T. Zhang L. Cell membrane-camouflaged nanoparticles for drug delivery. J. Control. Release 2015 220 Pt B 600 607 10.1016/j.jconrel.2015.07.019 26210440
    [Google Scholar]
  84. Bohn Thomsen L. Lichota J. Navndrup Eskehave T. Linemann T. Hog Mortensen J. Gaarn du Jardin K. Moos T. Brain delivery systems via mechanism independent of receptor-mediated endocytosis and adsorptive-mediated endocytosis. Curr. Pharm. Biotechnol. 2012 13 12 2349 2354 10.2174/138920112803341842 23016641
    [Google Scholar]
  85. Kumar V. Farell G. Yu S. Harrington S. Fitzpatrick L. Rzewuska E. Miller V.M. Lieske J.C. Cell biology of pathologic renal calcification: Contribution of crystal transcytosis, cell-mediated calcification, and nanoparticles. J. Investig. Med. 2006 54 7 412 424 10.2310/6650.2006.06021 17169263
    [Google Scholar]
  86. Hansen S.H. Sandvig K. van Deurs B. Molecules internalized by clathrin-independent endocytosis are delivered to endosomes containing transferrin receptors. J. Cell Biol. 1993 123 1 89 97 10.1083/jcb.123.1.89 8408209
    [Google Scholar]
  87. Fillebeen C. Descamps L. Dehouck M.P. Fenart L. Benaïssa M. Spik G. Cecchelli R. Pierce A. Receptor-mediated transcytosis of lactoferrin through the blood-brain barrier. J. Biol. Chem. 1999 274 11 7011 7017 10.1074/jbc.274.11.7011 10066755
    [Google Scholar]
  88. Azizi P.M. Zyla R.E. Guan S. Wang C. Liu J. Bolz S.S. Heit B. Klip A. Lee W.L. Clathrin-dependent entry and vesicle-mediated exocytosis define insulin transcytosis across microvascular endothelial cells. Mol. Biol. Cell 2015 26 4 740 750 10.1091/mbc.E14‑08‑1307 25540431
    [Google Scholar]
  89. Hansen C.G. Nichols B.J. Molecular mechanisms of clathrin-independent endocytosis. J. Cell Sci. 2009 122 11 1713 1721 10.1242/jcs.033951 19461071
    [Google Scholar]
  90. Georgieva J. Hoekstra D. Zuhorn I. Smuggling drugs into the brain: An overview of ligands targeting transcytosis for drug delivery across the blood–brain barrier. Pharmaceutics 2014 6 4 557 583 10.3390/pharmaceutics6040557 25407801
    [Google Scholar]
  91. Choudhury H. Pandey M. Chin P.X. Phang Y.L. Cheah J.Y. Ooi S.C. Mak K.K. Pichika M.R. Kesharwani P. Hussain Z. Gorain B. Transferrin receptors-targeting nanocarriers for efficient targeted delivery and transcytosis of drugs into the brain tumors: a review of recent advancements and emerging trends. Drug Deliv. Transl. Res. 2018 8 5 1545 1563 10.1007/s13346‑018‑0552‑2 29916012
    [Google Scholar]
  92. Xu Q. Yan X. Zhang Y. Wu J. Current understanding of transport and bioavailability of bioactive peptides derived from dairy proteins: a review. Int. J. Food Sci. Technol. 2019 54 6 1930 1941 10.1111/ijfs.14055
    [Google Scholar]
  93. Yang A.C. Stevens M.Y. Chen M.B. Lee D.P. Stähli D. Gate D. Contrepois K. Chen W. Iram T. Zhang L. Vest R.T. Chaney A. Lehallier B. Olsson N. du Bois H. Hsieh R. Cropper H.C. Berdnik D. Li L. Wang E.Y. Traber G.M. Bertozzi C.R. Luo J. Snyder M.P. Elias J.E. Quake S.R. James M.L. Wyss-Coray T. Physiological blood–brain transport is impaired with age by a shift in transcytosis. Nature 2020 583 7816 425 430 10.1038/s41586‑020‑2453‑z 32612231
    [Google Scholar]
  94. Muro S. Koval M. Muzykantov V. Endothelial endocytic pathways: Gates for vascular drug delivery. Curr. Vasc. Pharmacol. 2004 2 3 281 299 10.2174/1570161043385736 15320826
    [Google Scholar]
  95. Hervé F. Ghinea N. Scherrmann J.M. CNS delivery via adsorptive transcytosis. AAPS J. 2008 10 3 455 472 10.1208/s12248‑008‑9055‑2 18726697
    [Google Scholar]
  96. Odom T.L. LeBroc H.D. Callmann C.E. Biomacromolecule-tagged nanoscale constructs for crossing the blood–brain barrier. Nanoscale 2024 16 8 3969 3976 10.1039/D3NR06154J 38305381
    [Google Scholar]
  97. Wang G. Wu B. Li Q. Chen S. Jin X. Liu Y. Zhou Z. Shen Y. Huang P. Active transportation of liposome enhances tumor accumulation, penetration, and therapeutic efficacy. Small 2020 16 44 2004172 10.1002/smll.202004172 33030305
    [Google Scholar]
  98. Jia F. Li L. Fang Y. Song M. Man J. Jin Q. Lei Y. Ji J. Macromolecular platform with super-cation enhanced trans-cornea infiltration for noninvasive nitric oxide delivery in ocular therapy. ACS Nano 2020 14 12 16929 16938 10.1021/acsnano.0c05977 33289535
    [Google Scholar]
  99. Li Z. Zhang Q. Li Z. Ren L. Pan D. Gong Q. Gu Z. Cai H. Luo K. Branched glycopolymer prodrug-derived nanoassembly combined with a STING agonist activates an immuno-supportive status to boost anti-PD-L1 antibody therapy. Acta Pharm. Sin. B 2024 14 5 2194 2209 10.1016/j.apsb.2024.02.006 38799622
    [Google Scholar]
  100. Pandit S. Dutta D. Nie S. Active transcytosis and new opportunities for cancer nanomedicine. Nat. Mater. 2020 19 5 478 480 10.1038/s41563‑020‑0672‑1 32332990
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018336038240930082554
Loading
/content/journals/cdd/10.2174/0115672018336038240930082554
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test