Skip to content
2000
image of Advances in Iron Deficiency Anaemia Management: Exploring Novel Drug Delivery Systems and Future Perspectives

Abstract

Iron Deficiency Anaemia (IDA) is a prevalent global health issue characterized by inadequate iron levels in the body, leading to impaired red blood cell production and subsequent anaemia. Traditional treatment approaches for IDA, such as oral iron supplementation, often encounter challenges related to poor compliance, gastrointestinal side effects, and variable absorption rates. As a result, there is a growing interest in exploring novel drug delivery systems to enhance iron therapy efficacy and patient outcomes. This review discusses recent advances in IDA management, focusing on developing and utilizing innovative drug delivery systems for iron supplementation. Various strategies, including nanoformulations, microparticles, liposomes, and hydrogels, are explored for their potential to improve iron bioavailability, reduce adverse effects, and optimize therapeutic outcomes. Furthermore, promising strategies for the future management of IDA are explored, including the utilization of advanced technologies such as targeted drug delivery systems, controlled release mechanisms, and combination therapies. The integration of these novel drug delivery systems with advancements in diagnostics, personalized medicine, and patient-centered care holds great potential to revolutionize the management of IDA and improve the quality of life for individuals affected by this condition.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018300804240426070552
2024-07-25
2025-01-22
Loading full text...

Full text loading...

References

  1. Rajakaruna RM Ariyarathna IR Karunaratne DN Challenges and strategies to combat global iron deficiency by food fortification. Ceylon J. Sci. 2016 45 2 3 14 10.4038/cjs.v45i2.7384
    [Google Scholar]
  2. Ni J. WHO calls for accelerated action to reduce anaemia. WHO 2023 Available from: https://www.who.int/news/item/12-05-2023-who-calls-for-accelerated-action-to-reduce-anaemia#:~:text=WHO%20launches%20its%20first%2Dever,to%20reach%20the%20global%20target.
    [Google Scholar]
  3. Anand T. Rahi M. Sharma P. Ingle G.K. Issues in prevention of iron deficiency anemia in India. Nutrition 2014 30 7-8 764 770 10.1016/j.nut.2013.11.022 24984990
    [Google Scholar]
  4. Natekar P. Deshmukh C. Limaye D. Ramanathan V. Pawar A. A micro review of a nutritional public health challenge: Iron deficiency anemia in India. Clin. Epidemiol. Glob. Health 2022 14 100992 10.1016/j.cegh.2022.100992
    [Google Scholar]
  5. Wessling-Resnick M. Crossing the iron gate: Why and how transferrin receptors mediate viral entry. Annu. Rev. Nutr. 2018 38 1 431 458 10.1146/annurev‑nutr‑082117‑051749 29852086
    [Google Scholar]
  6. Milman N.T. A review of nutrients and compounds, which promote or inhibit intestinal iron absorption: making a platform for dietary measures that can reduce iron uptake in patients with genetic haemochromatosis. J. Nutr. Metab. 2020 2020 1 15 10.1155/2020/7373498 33005455
    [Google Scholar]
  7. Piskin E. Cianciosi D. Gulec S. Tomas M. Capanoglu E. Iron absorption: Factors, limitations, and improvement methods. ACS Omega 2022 7 24 20441 20456 10.1021/acsomega.2c01833 35755397
    [Google Scholar]
  8. Ferruzzi M.G. Kruger J. Mohamedshah Z. Debelo H. Taylor J.R.N. Insights from in vitro exploration of factors influencing iron, zinc and provitamin A carotenoid bioaccessibility and intestinal absorption from cereals. J. Cereal Sci. 2020 96 103126 10.1016/j.jcs.2020.103126
    [Google Scholar]
  9. Pilvenyte G. Ratautaite V. Boguzaite R. Samukaite-Bubniene U. Plausinaitis D. Ramanaviciene A. Bechelany M. Ramanavicius A. Molecularly imprinted polymers for the recognition of biomarkers of certain neurodegenerative diseases. J. Pharm. Biomed. Anal. 2023 228 115343 10.1016/j.jpba.2023.115343 36934618
    [Google Scholar]
  10. Pilvenyte G. Ratautaite V. Boguzaite R. Ramanavicius S. Chen C.F. Viter R. Ramanavicius A. Molecularly imprinted polymer-based electrochemical sensors for the diagnosis of infectious diseases. Biosensors 2023 13 6 620 10.3390/bios13060620 37366985
    [Google Scholar]
  11. Skolmowska D. Głąbska D. Analysis of heme and non-heme iron intake and iron dietary sources in adolescent menstruating females in a national polish sample. Nutrients 2019 11 5 1049 10.3390/nu11051049 31083370
    [Google Scholar]
  12. Bryszewska M. Comparison study of iron bioaccessibility from dietary supplements and microencapsulated preparations. Nutrients 2019 11 2 273 10.3390/nu11020273 30691123
    [Google Scholar]
  13. Silva A.M.N. Moniz T. de Castro B. Rangel M. Human transferrin: An inorganic biochemistry perspective. Coord. Chem. Rev. 2021 449 214186 10.1016/j.ccr.2021.214186
    [Google Scholar]
  14. Richard C. Verdier F. Transferrin receptors in erythropoiesis. Int. J. Mol. Sci. 2020 21 24 9713 10.3390/ijms21249713 33352721
    [Google Scholar]
  15. Schoener B Borger J. Erythropoietin stimulating agents StatPearls Treasure Island (FL) StatPearls Publishing 2024
    [Google Scholar]
  16. Serum ferritin concentrations for the assessment of iron status in individuals and populations: Technical brief. Avaiable from: https://www.who.int/publications/i/item/9789240008526
  17. Pan Y. Ren Z. Gao S. Shen J. Fan X. Yan N. Zhou M. Structural basis of ion transport and inhibition in ferroportin. Biophys. J. 2021 120 3 72a 10.1016/j.bpj.2020.11.656
    [Google Scholar]
  18. Chambers K Ashraf MA Sharma S Physiology, hepcidin. StatPearls Treasure Island (FL) StatPearls Publishing 2024
    [Google Scholar]
  19. Billesbølle C.B. Azumaya C.M. Kretsch R.C. Powers A.S. Gonen S. Schneider S. Arvedson T. Dror R.O. Cheng Y. Manglik A. Structure of hepcidin-bound ferroportin reveals iron homeostatic mechanisms. Nature 2020 586 7831 807 811 10.1038/s41586‑020‑2668‑z 32814342
    [Google Scholar]
  20. Gulec S. Anderson G.J. Collins J.F. Mechanistic and regulatory aspects of intestinal iron absorption. Am. J. Physiol. Gastrointest. Liver Physiol. 2014 307 4 G397 G409 10.1152/ajpgi.00348.2013 24994858
    [Google Scholar]
  21. Kulkarni A. Khade M. Arun S. Badami P. Kumar G.R.K. Dattaroy T. Soni B. Dasgupta S. An overview on mechanism, cause, prevention and multi-nation policy level interventions of dietary iron deficiency. Crit. Rev. Food Sci. Nutr. 2022 62 18 4893 4907 10.1080/10408398.2021.1879005 33543636
    [Google Scholar]
  22. Ito H. Kurokawa H. Matsui H. Mitochondrial reactive oxygen species and heme, non-heme iron metabolism. Arch. Biochem. Biophys. 2021 700 108695 10.1016/j.abb.2020.108695 33232715
    [Google Scholar]
  23. Kondaiah P. Yaduvanshi P.S. Sharp P.A. Pullakhandam R. Iron and zinc homeostasis and interactions: Does enteric zinc excretion cross-talk with intestinal iron absorption? Nutrients 2019 11 8 1885 10.3390/nu11081885 31412634
    [Google Scholar]
  24. Sharp P. Srai S.K. Molecular mechanisms involved in intestinal iron absorption. World J. Gastroenterol. 2007 13 35 4716 4724 10.3748/wjg.v13.i35.4716 17729393
    [Google Scholar]
  25. Waldvogel-Abramowski S. Waeber G. Gassner C. Buser A. Frey B.M. Favrat B. Tissot J.D. Physiology of iron metabolism. Transfus. Med. Hemother. 2014 41 3 213 221 10.1159/000362888 25053935
    [Google Scholar]
  26. Lesjak M. K S Srai S. Role of dietary flavonoids in iron homeostasis. Pharmaceuticals 2019 12 3 119 10.3390/ph12030119 31398897
    [Google Scholar]
  27. Kaitha S. Bashir M. Ali T. Iron deficiency anemia in inflammatory bowel disease. World J. Gastrointest. Pathophysiol. 2015 6 3 62 72 10.4291/wjgp.v6.i3.62 26301120
    [Google Scholar]
  28. Mahadea D. Adamczewska E. Ratajczak A.E. Rychter A.M. Zawada A. Eder P. Dobrowolska A. Krela-Kaźmierczak I. Iron deficiency anaemia in inflammatory bowel diseases—a narrative review. Nutrients 2021 13 11 4008 10.3390/nu13114008 34836263
    [Google Scholar]
  29. Fertrin KY Diagnosis and management of iron deficiency in chronic inflammatory conditions (CIC): Is too little iron making your patient sick?. Hematology Am Soc Hematol Educ Program. 2020 2020 1 478 486
    [Google Scholar]
  30. Niepel D. Klag T. Malek N.P. Wehkamp J. Practical guidance for the management of iron deficiency in patients with inflammatory bowel disease. Therap. Adv. Gastroenterol. 2018 11 10.1177/1756284818769074 29760784
    [Google Scholar]
  31. Jimenez K. Kulnigg-Dabsch S. Gasche C. Management of iron deficiency anaemia. Gastroenterol. Hepatol. 2015 11 4 241 250 27099596
    [Google Scholar]
  32. Portolés J. Martín L. Broseta J.J. Cases A. Anaemia in chronic kidney disease: From pathophysiology and current treatments, to future agents. Front. Med. 2021 8 642296 10.3389/fmed.2021.642296 33842503
    [Google Scholar]
  33. Gafter-Gvili A. Schechter A. Rozen-Zvi B. Iron deficiency anaemia in chronic kidney disease. Acta Haematol. 2019 142 1 44 50 10.1159/000496492 30970355
    [Google Scholar]
  34. Ganz T Nemeth E Iron balance and the role of hepcidin in chronic kidney disease. Seminars in nephrology WB Saunders 2016 36 2 87 93 10.1016/j.semnephrol.2016.02.001
    [Google Scholar]
  35. Loréal O. Haziza-Pigeon C. Troadec M.B. Detivaud L. Turlin B. Courselaud B. Ilyin G. Brissot P. Hepcidin in iron metabolism. Curr. Protein Pept. Sci. 2005 6 3 279 291 10.2174/1389203054065392 15974953
    [Google Scholar]
  36. Shah R. Agarwal A.K. Anemia associated with chronic heart failure: Clinurrent concepts. Clin. Interv. Aging 2013 8 111 122 23403618
    [Google Scholar]
  37. Anand I.S. Gupta P. Anaemia and iron deficiency in heart failure: Current concepts and emerging therapies. Circulation 2018 138 1 80 98 10.1161/CIRCULATIONAHA.118.030099 29967232
    [Google Scholar]
  38. Nemeth E Ganz T. Anaemia of inflammation. Hematology/Oncology Clinics 2014 28 4 671 681
    [Google Scholar]
  39. Silverberg D.S. Wexler D. Iaina A. Steinbruch S. Wollman Y. Schwartz D. Anemia, chronic renal disease and congestive heart failure—the cardio renal anemia syndrome: The need for cooperation between cardiologists and nephrologists. Int. Urol. Nephrol. 2006 38 2 295 310 10.1007/s11255‑006‑0064‑8 16868702
    [Google Scholar]
  40. Coad J. Conlon C. Iron deficiency in women. Curr. Opin. Clin. Nutr. Metab. Care 2011 14 6 625 634 10.1097/MCO.0b013e32834be6fd 21934611
    [Google Scholar]
  41. Mansour D. Hofmann A. Gemzell-Danielsson K. A review of clinical guidelines on the management of iron deficiency and iron-deficiency anaemia in women with heavy menstrual bleeding. Adv. Ther. 2021 38 1 201 225 10.1007/s12325‑020‑01564‑y 33247314
    [Google Scholar]
  42. Georgieff M.K. Iron deficiency in pregnancy. Am. J. Obstet. Gynecol. 2020 223 4 516 524 10.1016/j.ajog.2020.03.006 32184147
    [Google Scholar]
  43. Garzon S. Cacciato P.M. Certelli C. Salvaggio C. Magliarditi M. Rizzo G. Iron deficiency anaemia in pregnancy: Novel approaches for an old problem. Oman Med. J. 2020 35 5 e166 10.5001/omj.2020.108 32953141
    [Google Scholar]
  44. Srivastava S. Shukla A.K. Verma G. Effect of maternal anemia on the status of iron stores in infants: A cohort study. J. Family Community Med. 2019 26 2 118 122 10.4103/jfcm.JFCM_115_18 31143084
    [Google Scholar]
  45. Bermejo F. García-López S. A guide to diagnosis of iron deficiency and iron deficiency anaemia in digestive diseases. WJG 2009 15 37 4638 10.3748/wjg.15.4638 19787826
    [Google Scholar]
  46. Bazeley J.W. Wish J.B. Recent and emerging therapies for iron deficiency in anaemia of CKD: A review. Am. J. Kidney Dis. 2022 79 6 868 876 10.1053/j.ajkd.2021.09.017 34758368
    [Google Scholar]
  47. Mahroum N. Alghory A. Kiyak Z. Alwani A. Seida R. Alrais M. Shoenfeld Y. Ferritin – from iron, through inflammation and autoimmunity, to COVID-19. J. Autoimmun. 2022 126 102778 10.1016/j.jaut.2021.102778 34883281
    [Google Scholar]
  48. Hawkins R.C. Total iron binding capacity or transferrin concentration alone outperforms iron and saturation indices in predicting iron deficiency. Clin. Chim. Acta 2007 380 1-2 203 207 10.1016/j.cca.2007.02.032 17376421
    [Google Scholar]
  49. Kawabata H. Transferrin and transferrin receptors update. Free Radic. Biol. Med. 2019 133 46 54 10.1016/j.freeradbiomed.2018.06.037 29969719
    [Google Scholar]
  50. Al-Naseem A. Sallam A. Choudhury S. Thachil J. Iron deficiency without anaemia: A diagnosis that matters. Clin. Med. 2021 21 2 107 113 10.7861/clinmed.2020‑0582 33762368
    [Google Scholar]
  51. Karagülle M Gündüz E Şahin Mutlu F Akay MO Clinical significance of reticulocyte hemoglobin content in the diagnosis of iron deficiency anaemia. Turk. J. Hematol. 2013 30 2 153 156
    [Google Scholar]
  52. Kumar Y. Koul A. Singla R. Ijaz M.F. Artificial intelligence in disease diagnosis: A systematic literature review, synthesizing framework and future research agenda. J. Ambient Intell. Humaniz. Comput. 2022 ••• 1 28 35039756
    [Google Scholar]
  53. Ning S Zeller MP Management of iron deficiency. Hematology Am Soc Hematol Educ Program 2019 2019 1 315 322 10.1182/hematology.2019000034
    [Google Scholar]
  54. Schaefer B. Meindl E. Wagner S. Tilg H. Zoller H. Intravenous iron supplementation therapy. Mol. Aspects Med. 2020 75 100862 10.1016/j.mam.2020.100862 32444112
    [Google Scholar]
  55. Okam M.M. Koch T.A. Tran M.H. Iron deficiency anemia treatment response to oral iron therapy: A pooled analysis of five randomized controlled trials. Haematologica 2016 101 1 e6 e7 10.3324/haematol.2015.129114 26518747
    [Google Scholar]
  56. Block GA Ferric citrate in patients with chronic kidney disease. Seminars in Nephrology WB Saunders 2016 36 130 135 10.1016/j.semnephrol.2016.02.008
    [Google Scholar]
  57. Richards T. Breymann C. Brookes M.J. Lindgren S. Macdougall I.C. McMahon L.P. Munro M.G. Nemeth E. Rosano G.M.C. Schiefke I. Weiss G. Questions and answers on iron deficiency treatment selection and the use of intravenous iron in routine clinical practice. Ann. Med. 2021 53 1 274 285 10.1080/07853890.2020.1867323 33426933
    [Google Scholar]
  58. Lepanto M.S. Rosa L. Cutone A. Conte M.P. Paesano R. Valenti P. Efficacy of lactoferrin oral administration in the treatment of anaemia and anaemia of inflammation in pregnant and non-pregnant women: An interventional study. Front. Immunol. 2018 9 2123 10.3389/fimmu.2018.02123 30298070
    [Google Scholar]
  59. Tolkien Z. Stecher L. Mander A.P. Pereira D.I.A. Powell J.J. Ferrous sulfate supplementation causes significant gastrointestinal side-effects in adults: A systematic review and meta-analysis. PLoS One 2015 10 2 e0117383 10.1371/journal.pone.0117383 25700159
    [Google Scholar]
  60. Cappellini M.D. Musallam K.M. Taher A.T. Iron deficiency anaemia revisited. J. Intern. Med. 2020 287 2 153 170 10.1111/joim.13004 31665543
    [Google Scholar]
  61. Stein J. Hartmann F. Dignass A.U. Diagnosis and management of iron deficiency anemia in patients with IBD. Nat. Rev. Gastroenterol. Hepatol. 2010 7 11 599 610 10.1038/nrgastro.2010.151 20924367
    [Google Scholar]
  62. Nielsen O. Soendergaard C. Vikner M. Weiss G. Rational management of iron-deficiency anaemia in inflammatory bowel disease. Nutrients 2018 10 1 82 10.3390/nu10010082 29342861
    [Google Scholar]
  63. Santiago P. Ferrous versus ferric oral iron formulations for the treatment of iron deficiency: A clinical overview. Sci. World J. 2012 2012 846824 10.1100/2012/846824
    [Google Scholar]
  64. Zariwala M.G. Somavarapu S. Farnaud S. Renshaw D. Comparison study of oral iron preparations using a human intestinal model. Sci. Pharm. 2013 81 4 1123 1139 10.3797/scipharm.1304‑03 24482777
    [Google Scholar]
  65. Gómez-Ramírez S. Brilli E. Tarantino G. Muñoz M. Sucrosomial® iron: A new generation iron for improving oral supplementation. Pharmaceuticals 2018 11 4 97 10.3390/ph11040097 30287781
    [Google Scholar]
  66. Wessling-Resnick M. Iron homeostasis and the inflammatory response. Annu. Rev. Nutr. 2010 30 1 105 122 10.1146/annurev.nutr.012809.104804 20420524
    [Google Scholar]
  67. Han Y. Huang W. Meng H. Zhan Y. Hou J. Pro‐inflammatory cytokine interleukin‐6‐induced hepcidin, a key mediator of periodontitis‐related anemia of inflammation. J. Periodontal Res. 2021 56 4 690 701 10.1111/jre.12865 33656216
    [Google Scholar]
  68. Sun C.C. Vaja V. Babitt J.L. Lin H.Y. Targeting the hepcidin–ferroportin axis to develop new treatment strategies for anemia of chronic disease and anemia of inflammation. Am. J. Hematol. 2012 87 4 392 400 10.1002/ajh.23110 22290531
    [Google Scholar]
  69. D’Angelo G. Role of hepcidin in the pathophysiology and diagnosis of anemia. Blood Res. 2013 48 1 10 15 10.5045/br.2013.48.1.10 23589789
    [Google Scholar]
  70. Maladkar M. Sankar S. Yadav A. A novel approach for iron deficiency anaemia with liposomal iron: Concept to clinic. J. Biosci. Med. 2020 8 9 27 41 10.4236/jbm.2020.89003
    [Google Scholar]
  71. Dymek M. Sikora E. Liposomes as biocompatible and smart delivery systems – The current state. Adv. Colloid Interface Sci. 2022 309 102757 10.1016/j.cis.2022.102757 36152374
    [Google Scholar]
  72. Tarantino G. Brilli E. Zambito Y. Giordano G. Equitani F. Sucrosomial Iron®: A new highly bioavaible oral iron supplement. Blood 2015 126 23 4561 10.1182/blood.V126.23.4561.4561
    [Google Scholar]
  73. Wang Y. Ye A. Hou Y. Jin Y. Xu X. Han J. Liu W. Microcapsule delivery systems of functional ingredients in infant formulae: Research progress, technology, and feasible application of liposomes. Trends Food Sci. Technol. 2022 119 36 44 10.1016/j.tifs.2021.11.016
    [Google Scholar]
  74. Subramani T. Ganapathyswamy H. An overview of liposomal nano-encapsulation techniques and its applications in food and nutraceutical. J. Food Sci. Technol. 2020 57 10 3545 3555 10.1007/s13197‑020‑04360‑2 32903987
    [Google Scholar]
  75. Waghmare R.B. Waghmare R.B. Encapsulation techniques for delivery of bioactive compounds in milk and dairy products- A review. J. Dairy Res Technol. 2020 3 1 1 9 10.24966/DRT‑9315/100017
    [Google Scholar]
  76. Malhotra J. Garg R. Malhotra N. Agrawal P. Oral liposomal iron: A treatment proposal for anaemia. World J Anaemia. 2017 1 4 1 6
    [Google Scholar]
  77. Trivedi R. Barve K. Delivery systems for improving iron uptake in anemia. Int. J. Pharm. 2021 601 120590 10.1016/j.ijpharm.2021.120590 33845149
    [Google Scholar]
  78. de Alvarenga Antunes C.V. de Alvarenga Nascimento C.R. Campanha da Rocha Ribeiro T. de Alvarenga Antunes P. de Andrade Chebli L. Martins Gonçalves Fava L. Malaguti C. Maria Fonseca Chebli J. Treatment of iron deficiency anemia with liposomal iron in inflammatory bowel disease: Efficacy and impact on quality of life. Int. J. Clin. Pharm. 2020 42 3 895 902 10.1007/s11096‑020‑01044‑x 32367457
    [Google Scholar]
  79. Bertani L. Tricò D. Zanzi F. Baiano Svizzero G. Coppini F. de Bortoli N. Bellini M. Antonioli L. Blandizzi C. Marchi S. Oral sucrosomial iron is as effective as intravenous ferric carboxy-maltose in treating anaemia in patients with ulcerative colitis. Nutrients 2021 13 2 608 10.3390/nu13020608 33673371
    [Google Scholar]
  80. Pisani A. Riccio E. Sabbatini M. Andreucci M. Del Rio A. Visciano B. Effect of oral liposomal iron versus intravenous iron for treatment of iron deficiency anaemia in CKD patients: A randomized trial. Nephrol. Dial. Transplant. 2015 30 4 645 652 10.1093/ndt/gfu357 25395392
    [Google Scholar]
  81. Hussain U. Zia K. Iqbal R. Saeed M. Ashraf N. Efficacy of a novel food supplement (Ferfer®) containing microencapsulated Iron in liposomal form in female Iron deficiency anaemia. Cureus 2019 11 5
    [Google Scholar]
  82. Ple A. Ple C. Rosoga N. Nedelcu S. Efficacy and tolerability of a novel food supplement (Turbofer®) containing microencapsulated iron in liposomal form, in female iron deficiency anaemia. J. Nutr. Int. Med. 2015 17 214 219
    [Google Scholar]
  83. Parisi F. Berti C. Mandò C. Martinelli A. Mazzali C. Cetin I. Effects of different regimens of iron prophylaxis on maternal iron status and pregnancy outcome: A randomized control trial. J. Matern. Fetal Neonatal Med. 2017 30 15 1787 1792 10.1080/14767058.2016.1224841 27588568
    [Google Scholar]
  84. Vitale S.G. Fiore M. La Rosa V.L. Rapisarda A.M.C. Mazza G. Paratore M. Commodari E. Caruso S. Liposomal ferric pyrophosphate and ascorbic acid supplementation in pregnant women with iron deficiency anaemia: Haematochemical, obstetric, neonatal and psychological outcomes in a prospective observational study. Int. J. Food Sci. Nutr. 2022 73 2 221 229 10.1080/09637486.2021.1950129 34238093
    [Google Scholar]
  85. Hosny K. Banjar Z. Hariri A. Hassan A.H. Solid lipid nanoparticles loaded with iron to overcome barriers for treatment of iron deficiency anemia. Drug Des. Devel. Ther. 2015 9 313 320 10.2147/DDDT.S77702 25609917
    [Google Scholar]
  86. Hatefi L. Farhadian N. A safe and efficient method for encapsulation of ferrous sulfate in solid lipid nanoparticle for non-oxidation and sustained iron delivery. Colloid Interface Sci. Commun. 2020 34 100227 10.1016/j.colcom.2019.100227
    [Google Scholar]
  87. von Moos L.M. Schneider M. Hilty F.M. Hilbe M. Arnold M. Ziegler N. Mato D.S. Winkler H. Tarik M. Ludwig C. Naegeli H. Langhans W. Zimmermann M.B. Sturla S.J. Trantakis I.A. Iron phosphate nanoparticles for food fortification: Biological effects in rats and human cell lines. Nanotoxicology 2017 11 4 496 506 10.1080/17435390.2017.1314035 28368214
    [Google Scholar]
  88. Pereira D.I.A. Bruggraber S.F.A. Faria N. Poots L.K. Tagmount M.A. Aslam M.F. Frazer D.M. Vulpe C.D. Anderson G.J. Powell J.J. Nanoparticulate iron(III) oxo-hydroxide delivers safe iron that is well absorbed and utilised in humans. Nanomedicine 2014 10 8 1877 1886 10.1016/j.nano.2014.06.012 24983890
    [Google Scholar]
  89. Koorts A.M. Viljoen M. Ferritin and ferritin isoforms I: Structure–function relationships, synthesis, degradation and secretion. Arch. Physiol. Biochem. 2007 113 1 30 54 10.1080/13813450701318583 17522983
    [Google Scholar]
  90. Powell J.J. Bruggraber S.F.A. Faria N. Poots L.K. Hondow N. Pennycook T.J. Latunde-Dada G.O. Simpson R.J. Brown A.P. Pereira D.I.A. A nano-disperse ferritin-core mimetic that efficiently corrects anemia without luminal iron redox activity. Nanomedicine 2014 10 7 1529 1538 10.1016/j.nano.2013.12.011 24394211
    [Google Scholar]
  91. Fathy M.M. Fahmy H.M. Balah A.M.M. Mohamed F.F. Elshemey W.M. Magnetic nanoparticles-loaded liposomes as a novel treatment agent for iron deficiency anemia: In vivo study. Life Sci. 2019 234 116787 10.1016/j.lfs.2019.116787 31445028
    [Google Scholar]
  92. Ghibaudo F. Gerbino E. Copello G.J. Campo Dall’ Orto V. Gómez-Zavaglia A. Pectin-decorated magnetite nanoparticles as both iron delivery systems and protective matrices for probiotic bacteria. Colloids Surf. B Biointerfaces 2019 180 193 201 10.1016/j.colsurfb.2019.04.049 31054459
    [Google Scholar]
  93. Jaber N. Al-Remawi M. Qatouseh L.A. Ahmad M. Aiedeh K. Synthesis, characterization and evaluation of oleoyl-chitosan derivatives as enhancers for ferrous ions nano-delivery using Caco-2 cell model. J. Drug Deliv. Sci. Technol. 2020 58 101761 10.1016/j.jddst.2020.101761
    [Google Scholar]
  94. Wang N. Wu Y. Zhao X. Lai B. Sun N. Tan M. Food-borne nanocarriers from roast beef patties for iron delivery. Food Funct. 2019 b 10 10 6711 6719 10.1039/C9FO01795J 31560353
    [Google Scholar]
  95. Tang M. Wang D. Hou Y. Buchili P. Sun L. Preparation, characterization, bioavailability in vitro and in vivo of tea polysaccharides–iron complex. Eur. Food Res. Technol. 2013 236 2 341 350 10.1007/s00217‑012‑1891‑8
    [Google Scholar]
  96. Cui J. Li Y. Yu P. Zhan Q. Wang J. Chi Y. Wang P. A novel low molecular weight Enteromorpha polysaccharide-iron (III) complex and its effect on rats with iron deficiency anemia (IDA). Int. J. Biol. Macromol. 2018 108 412 418 10.1016/j.ijbiomac.2017.12.033 29223752
    [Google Scholar]
  97. Ganie S.A. Naik R.A. Mir T.A. Ali A. Mazumdar N. Li Q. Tailored functionalization of gum arabic iron (II) complexes: Synthesis, characterization and dwindling of antianemic approach via in vivo studies. J. Polym. Environ. 2023 31 6 2448 2461 10.1007/s10924‑023‑02757‑6
    [Google Scholar]
  98. Liu T. Liu T. Liu H. Fan H. Chen B. Wang D. Zhang Y. Sun F. Preparation and characterization of a novel polysaccharide-iron (III) complex in Auricularia auricula potentially used as an iron supplement. BioMed Res. Int. 2019 2019 1 14 10.1155/2019/6416941 31309110
    [Google Scholar]
  99. Cheng C. Huang D. Zhao L. Cao C. Chen G. Preparation and in vitro absorption studies of a novel polysaccharide‑iron (III) complex from Flammulina velutipes. Int. J. Biol. Macromol. 2019 132 801 810 10.1016/j.ijbiomac.2019.04.015 30953722
    [Google Scholar]
  100. Wang J. Chen H. Wang Y. Xing L. Synthesis and characterization of a new Inonotus obliquus polysaccharide-iron(III) complex. Int. J. Biol. Macromol. 2015 75 210 217 10.1016/j.ijbiomac.2015.01.041 25643995
    [Google Scholar]
  101. Zheng Z. Zeng M. Bioavailability of iron-chelated peptides/proteins and their potential role in iron supplementation: A review. Food Chem. 2019 270 194 202 10.1016/j.foodchem.2018.07.031
    [Google Scholar]
  102. Gandhi A. Shah N. Sankhe S. Sonawane A. Bioavailability of iron from spray-dried whey protein concentrate-iron complex in anemic and weaning conditions: A randomized controlled trial in rats. J. Food Sci. 2022 87 2 819 826 10.1111/1750‑3841.15605 35067913
    [Google Scholar]
  103. Urso V. Elefante A. Di Micco S. Colucci G. Cirillo G. Evaluation of the efficacy of iron protein succinylate compared to ferrous sulphate in the management of iron deficiency anaemia: A randomized controlled trial. Curr. Med. Res. Opin. 2019 35 11 1959 1965 10.1080/03007995.2019.1636664
    [Google Scholar]
  104. Eckert E. Randall C. Shchukarev A. Larsen D. Barley protein-derived peptide with high affinity for iron: Potential functional food ingredient for iron uptake. J. Agric. Food Chem. 2016 64 11 2329 2336 10.1021/acs.jafc.6b00350
    [Google Scholar]
  105. Filiponi T. Braga A. Lacerda D. Pacheco M. Bona E. Microencapsulation techniques improve the stability of whey protein isolate-iron peptide complexes. J. Food Sci. Technol. 2019 56 8 3850 3861 10.1007/s13197‑019‑03948‑7
    [Google Scholar]
  106. Caetano-Silva M. Pereira R. Bona E. Pollonio M. Influence of iron precursor compounds on the formation and properties of whey peptide-iron complexes. J. Food Sci. Technol. 2017 54 4 967 977 10.1007/s13197‑017‑2540‑7
    [Google Scholar]
  107. Abdelazim S. Elsedfy G. Abdallah M. Ali A. Comparison between heme iron polypeptide and iron saccharate complex in the treatment of pregnant women with iron deficiency anaemia. Arch. Gynecol. Obstet. 2017 295 1 131 137 10.1007/s00404‑016‑4210‑6
    [Google Scholar]
  108. Caetano-Silva M. Bona E. Pollonio M. Whey peptide-iron complexes: Iron bioavailability and its transport across the cell membrane. J. Food Sci. Technol. 2018 55 3 893 900 10.1007/s13197‑017‑3017‑5
    [Google Scholar]
  109. Liang X. Sun Y. Wang Q. Slow-release properties of flaxseed gum nanocomposites for enhancing iron bioavailability. Int. J. Biol. Macromol. 2018 119 741 748 10.1016/j.ijbiomac.2018.07.030
    [Google Scholar]
  110. Morath B. Sauer S. Zaradzki M. Wagner A.H. Orodispersible films – Recent developments and new applications in drug delivery and therapy. Biochem. Pharmacol. 2022 200 115036 10.1016/j.bcp.2022.115036 35427572
    [Google Scholar]
  111. Cupone I.E. Roselli G. Marra F. Riva M. Angeletti S. Dugo L. Spoto S. Fogolari M. Giori A.M. Orodispersible film based on maltodextrin: A convenient and suitable method for iron supplementation. Pharmaceutics 2023 15 6 1575 10.3390/pharmaceutics15061575 37376024
    [Google Scholar]
  112. Gupta M.S. Kumar T.P. Reddy D. Pathak K. Gowda D.V. Babu A.V.N. Aodah A.H. Khafagy E.S. Alotaibi H.F. Abu Lila A.S. Moin A. Hussin T. Development and characterization of pullulan-based orodispersible films of iron. Pharmaceutics 2023 15 3 1027 10.3390/pharmaceutics15031027 36986887
    [Google Scholar]
  113. Shubham K. Anukiruthika T. Dutta S. Kashyap A.V. Moses J.A. Anandharamakrishnan C. Iron deficiency anemia: A comprehensive review on iron absorption, bioavailability and emerging food fortification approaches. Trends Food Sci. Technol. 2020 99 58 75 10.1016/j.tifs.2020.02.021
    [Google Scholar]
  114. Gasche C. Berstad A. Befrits R. Beglinger C. Dignass A. Erichsen K. Gomollon F. Hjortswang H. Koutroubakis I. Kulnigg S. Oldenburg B. Rampton D. Schroeder O. Stein J. Travis S. Van Assche G. Guidelines on the diagnosis and management of iron deficiency and anemia in inflammatory bowel diseases#. Inflamm. Bowel Dis. 2007 13 12 1545 1553 10.1002/ibd.20285 17985376
    [Google Scholar]
  115. Naahidi S. Jafari M. Edalat F. Raymond K. Khademhosseini A. Chen P. Biocompatibility of engineered nanoparticles for drug delivery. J. Control. Release 2013 166 2 182 194 10.1016/j.jconrel.2012.12.013 23262199
    [Google Scholar]
  116. Yugavathy N Abdullah BM Lim SK Gafor AH Wong MG Bavanandan S Wong HS Huri HZ Precision medicine in erythropoietin deficiency and treatment resistance: A novel approach in management of anaemia of chronic kidney disease. Curr. Issues Mol. Biol. 2023 45 6550 6563 10.3390/cimb45080413
    [Google Scholar]
  117. Teng Y. Stewart S.G. Hai Y.W. Li X. Banwell M.G. Lan P. Sucrose fatty acid esters: Synthesis, emulsifying capacities, biological activities and structure-property profiles. Crit. Rev. Food Sci. Nutr. 2021 61 19 3297 3317 10.1080/10408398.2020.1798346 32746632
    [Google Scholar]
  118. Zariwala M.G. Farnaud S. Merchant Z. Somavarapu S. Renshaw D. Ascorbyl palmitate/DSPE-PEG nanocarriers for oral iron delivery: Preparation, characterisation and in vitro evaluation. Colloids Surf. B Biointerfaces 2014 115 86 92 10.1016/j.colsurfb.2013.11.028 24333557
    [Google Scholar]
  119. Durán E. Churio O. Arias J.L. Neira-Carrillo A. Valenzuela C. Preparation and characterization of novel edible matrices based on alginate and whey for oral delivery of iron. Food Hydrocoll. 2020 98 105277 10.1016/j.foodhyd.2019.105277
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018300804240426070552
Loading
/content/journals/cdd/10.2174/0115672018300804240426070552
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: novel drug delivery systems ; etiology ; management ; Iron deficiency anaemia ; diagnosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test