Skip to content
2000
image of Garlic Extract-Mediated SPIONs-Incorporated Nanohydrogel for Enhanced Wound Healing Potential

Abstract

Background

Superparamagnetic iron oxide nanoparticles (SPIONs) with a specific size range of 15-70 nm are usually considered nontoxic substances with superior antibacterial activity, making them strong candidates for wound dressing applications. Although SPIONs have significant antibacterial activity, their ability to treat infected wounds still needs to be explored.

Objective

The objective of the present study was to synthesize antibacterial SPIONs (G-SPIONs) using aqueous garlic extract as a bioreducing agent and evaluate the synthesized G-SPIONs-incorporated nanohydrogel for wound healing potential.

Methods

Synthesized G-SPIONs were characterized by SEM, zeta potential, VSM, FTIR, . The antibacterial effects of G-SPIONs were evaluated against , , and , as compared to garlic extract. The synthesized G-SPIONs were further incorporated into the chitosan-based hydrogel (ChiG-SPIONs) to assess their wound healing potential using the rat model.

Results

The synthesized G-SPIONs had a positive surface charge of +3.82 mV and were spherical, with sizes ranging between 20-80 nm. Additionally, their hemo-biocompatible nature was confirmed by hemolysis assay. The magnetic nature of synthesized G-SPIONs was investigated using a vibrating sample magnetometer, and the saturation magnetization (Ms) was found to be 53.793emu/g. The wound healing study involving rats revealed a wound contraction rate of around 95% with improved skin regeneration. The histopathological examination demonstrated a faster rate of re-epithelialization with regeneration of blood vessels and hair follicles.

Conclusion

The results demonstrated that the developed ChiG-SPIONs could be a novel and efficient nanohydrogel dressing material for the effective management of wound infections.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018263115250212075106
2025-02-14
2025-05-05
Loading full text...

Full text loading...

References

  1. Saghazadeh S. Rinoldi C. Schot M. Kashaf S.S. Sharifi F. Jalilian E. Nuutila K. Giatsidis G. Mostafalu P. Derakhshandeh H. Yue K. Swieszkowski W. Memic A. Tamayol A. Khademhosseini A. Drug delivery systems and materials for wound healing applications. Adv. Drug Deliv. Rev. 2018 127 138 166 10.1016/j.addr.2018.04.008 29626550
    [Google Scholar]
  2. Batool M. Khurshid S. Qureshi Z. Daoush W.M. Adsorption, antimicrobial and wound healing activities of biosynthesised zinc oxide nanoparticles. Chem. Pap. 2021 75 3 893 907 10.1007/s11696‑020‑01343‑7
    [Google Scholar]
  3. Liu Y.F. Ni P.W. Huang Y. Xie T. Therapeutic strategies for chronic wound infection. Chin. J. Traumatol. 2022 25 1 11 16 10.1016/j.cjtee.2021.07.004 34315658
    [Google Scholar]
  4. Parmanik A. Das S. Kar B. Bose A. Dwivedi G.R. Pandey M.M. Current treatment strategies against multidrug-resistant bacteria: A review. Curr. Microbiol. 2022 79 12 388 10.1007/s00284‑022‑03061‑7 36329256
    [Google Scholar]
  5. Zheng L. Gu B. Li S. Luo B. Wen Y. Chen M. Li X. Zha Z. Zhang H.T. Wang X. An antibacterial hemostatic AuNPs@corn stalk/chitin composite sponge with shape recovery for promoting wound healing. Carbohydr. Polym. 2022 296 119924 10.1016/j.carbpol.2022.119924 36088022
    [Google Scholar]
  6. Parmanik A. Bose A. Ghosh B. Research advancement on magnetic iron oxide nanoparticles and their potential biomedical applications. Minerva. Biotechnol. Biomol. Res. 2022 34 2 10.23736/S2724‑542X.21.02830‑3
    [Google Scholar]
  7. El-Saber Batiha G. Beshbishy M.A. Wasef G.L. Elewa Y.H.A. A Al-Sagan A. Abd El-Hack M.E. Taha A.E. M Abd-Elhakim Y. Devkota P.H. Chemical constituents and pharmacological activities of garlic (Allium sativum L.): A review. Nutrients 2020 12 3 872 10.3390/nu12030872 32213941
    [Google Scholar]
  8. Fadare O.S. Singh V. Enabulele O.I. Shittu O.H. Pradhan D. In vitro evaluation of the synbiotic effect of probiotic Lactobacillus strains and garlic extract against Salmonella species. Lebensm. Wiss. Technol. 2022 153 112439 10.1016/j.lwt.2021.112439
    [Google Scholar]
  9. Alnehia A. Al-Odayni A.B. Al-Hammadi A.H. Alramadhan S.A. Alnahari H. Saeed W.S. Al-Sharabi A. Garlic extract-mediated synthesis of ZnS nanoparticles: Structural, optical, antibacterial, and hemolysis studies. J. Nanomater. 2023 2023 1 9 10.1155/2023/8200912
    [Google Scholar]
  10. Abid M.A. Abid D.A. Aziz W.J. Rashid T.M. Iron oxide nanoparticles synthesized using garlic and onion peel extracts rapidly degrade methylene blue dye. Physica. B. 2021 622 413277 10.1016/j.physb.2021.413277
    [Google Scholar]
  11. Rath K. Sen S. Garlic extract based preparation of size controlled superparamagnetic hematite nanoparticles and their cytotoxic applications. Indian J. Biotechnol. 2019 18 108 118
    [Google Scholar]
  12. Lu Z. Yu D. Nie F. Wang Y. Chong Y. Iron Nanoparticles open up new directions for promoting healing in chronic wounds in the context of bacterial infection. Pharmaceutics 2023 15 9 2327 10.3390/pharmaceutics15092327 37765295
    [Google Scholar]
  13. Mohammed A.A. Yao K. Ragaisyte I. Crestani D. Myant C.W. Pinna A. Stable and homogeneous SPION-infused Photo-Resins for 3D-printing magnetic hydrogels. Appl. Mater. Today 2024 37 102082 10.1016/j.apmt.2024.102082
    [Google Scholar]
  14. Wang W. Liu M. Shafiq M. Li H. Hashim R. EL-Newehy M. EL-Hamshary H. Morsi Y. Mo X. Synthesis of oxidized sodium alginate and its electrospun bio-hybrids with zinc oxide nanoparticles to promote wound healing. Int. J. Biol. Macromol. 2023 232 123480 10.1016/j.ijbiomac.2023.123480 36720331
    [Google Scholar]
  15. Gholami A. Mohammadi F. Ghasemi Y. Omidifar N. Ebrahiminezhad A. Antibacterial activity of SPIONs versus ferrous and ferric ions under aerobic and anaerobic conditions: A preliminary mechanism study. IET Nanobiotechnol. 2020 14 2 155 160 10.1049/iet‑nbt.2019.0266 32433033
    [Google Scholar]
  16. Huang L. Li W. Guo M. Huang Z. Chen Y. Dong X. Li Y. Zhu L. Silver doped-silica nanoparticles reinforced poly (ethylene glycol) diacrylate/hyaluronic acid hydrogel dressings for synergistically accelerating bacterial-infected wound healing. Carbohydr. Polym. 2023 304 120450 10.1016/j.carbpol.2022.120450 36641182
    [Google Scholar]
  17. Nandhini S.N. Sisubalan N. Vijayan A. Karthikeyan C. Gnanaraj M. Gideon D.A.M. Jebastin T. Varaprasad K. Sadiku R. Recent advances in green synthesized nanoparticles for bactericidal and wound healing applications. Heliyon 2023 9 2 e13128 10.1016/j.heliyon.2023.e13128 36747553
    [Google Scholar]
  18. Hao Y. Zhao W. Zhang H. Zheng W. Zhou Q. Carboxymethyl chitosan-based hydrogels containing fibroblast growth factors for triggering diabetic wound healing. Carbohydr. Polym. 2022 287 119336 10.1016/j.carbpol.2022.119336 35422300
    [Google Scholar]
  19. Konwar A. Kalita S. Kotoky J. Chowdhury D. Chitosan–iron oxide coated graphene oxide nanocomposite hydrogel: A robust and soft antimicrobial biofilm. ACS Appl. Mater. Interfaces 2016 8 32 20625 20634 10.1021/acsami.6b07510 27438339
    [Google Scholar]
  20. Parmanik A. Bose A. Ghosh B. Paul M. Itoo A. Biswas S. Arakha M. Development of triphala churna extract mediated iron oxide nanoparticles as novel treatment strategy for triple negative breast cancer. J. Drug Deliv. Sci. Technol. 2022 76 103735 10.1016/j.jddst.2022.103735
    [Google Scholar]
  21. Sun J.Z. Sun Y.C. Sun L. Synthesis of surface modified Fe3O4 super paramagnetic nanoparticles for ultra sound examination and magnetic resonance imaging for cancer treatment. J. Photochem. Photobiol. B 2019 197 111547 10.1016/j.jphotobiol.2019.111547 31325773
    [Google Scholar]
  22. Konwar A. Gogoi N. Majumdar G. Chowdhury D. Green chitosan–carbon dots nanocomposite hydrogel film with superior properties. Carbohydr. Polym. 2015 115 238 245 10.1016/j.carbpol.2014.08.021 25439891
    [Google Scholar]
  23. Priyanka K. Sahoo R.N. Nanda A. Kanhar S. Das C. Sahu A. Naik P.K. Nayak A.K. Wound healing activity of topical herbal gels containing Barringtoniaacutangulafruit extract: In silico and in vivo studies. Chem. Biodivers. 2024 21 6 e202400147 10.1002/cbdv.202400147 38687689
    [Google Scholar]
  24. Rohindra D.R. Nand A.V. Khurma J.R. Swelling properties of chitosan hydrogels. Pac. J. Miss. Stud. 2004 22 32 35 10.1071/SP04005
    [Google Scholar]
  25. Dang Q.F. Yan J.Q. Li J.J. Cheng X.J. Liu C.S. Chen X.G. Controlled gelation temperature, pore diameter and degradation of a highly porous chitosan-based hydrogel. Carbohydr. Polym. 2011 83 1 171 178 10.1016/j.carbpol.2010.07.038
    [Google Scholar]
  26. Far F.B. Omrani M. Jamal N.M.R. Javanshir S. Multi-responsive chitosan-based hydrogels for controlled release of vincristine. Commun. Chem. 2023 6 1 28 10.1038/s42004‑023‑00829‑1 36765265
    [Google Scholar]
  27. Sahoo B. Panigrahi L.L. Jena S. Jha S. Arakha M. Oxidative stress generated due to photocatalytic activity of biosynthesized selenium nanoparticles triggers cytoplasmic leakage leading to bacterial cell death. RSC Adv. 2023 13 17 11406 11414 10.1039/D2RA07827A 37063733
    [Google Scholar]
  28. Rajora A.D. Bal T. Evaluation of cashew gum-polyvinyl alcohol (CG-PVA) electrospun nanofiber mat for scarless wound healing in a murine model. Int. J. Biol. Macromol. 2023 240 124417 10.1016/j.ijbiomac.2023.124417 37059283
    [Google Scholar]
  29. Souza B.M. Cabrera M.P.S. Gomes P.C. Dias N.B. Stabeli R.G. Leite N.B. Neto J.R. Palma M.S. Structure–activity relationship of mastoparan analogs: Effects of the number and positioning of Lys residues on secondary structure, interaction with membrane-mimetic systems and biological activity. Peptides 2015 72 164 174 10.1016/j.peptides.2015.04.021 25944744
    [Google Scholar]
  30. Al-Nadaf A.H. Awadallah A. Thiab S. Superior rat wound-healing activity of green synthesized silver nanoparticles from acetonitrile extract of Juglans regia L: Pellicle and leaves. Heliyon 2024 10 2 e24473 10.1016/j.heliyon.2024.e24473 38293455
    [Google Scholar]
  31. Ankomah A.D. Boakye Y.D. Agana T.A. Boamah V.E. Ossei P.P.S. Adu F. Agyare C. Evaluation of dermal toxicity and wound healing activity ofCnestisferrugineaVahl ex DC. Adv. Pharmacol. Pharm. Sci. 2022 2022 1 11 10.1155/2022/5268613 35656163
    [Google Scholar]
  32. Jose J. Pai A.R. Gopakumar D.A. Dalvi Y. Ruby V. Bhat S.G. Pasquini D. Kalarikkal N. Thomas S. Novel 3D porous aerogels engineered at nano scale from cellulose nano fibers and curcumin: An effective treatment for chronic wounds. Carbohydr. Polym. 2022 287 119338 10.1016/j.carbpol.2022.119338 35422297
    [Google Scholar]
  33. Nair S. Mukne A. Assessment of chemical stability of constituents in thiosulfinate derivative-rich extract of garlic by a validatedHPTLC method. Indian J. Pharm. Sci. 2017 79 3 438 450 10.4172/pharmaceutical‑sciences.1000247
    [Google Scholar]
  34. Chircov C. Vasile B.S. New approaches in synthesis and characterization methods of iron oxide nanoparticles InIron Oxide Nanoparticles. London IntechOpen 2022
    [Google Scholar]
  35. Dikshit P. Kumar J. Das A. Sadhu S. Sharma S. Singh S. Gupta P. Kim B. Green synthesis of metallic nanoparticles: Applications and limitations. Catalysts 2021 11 8 902 10.3390/catal11080902
    [Google Scholar]
  36. Chamani J. Comparison of the conformational stability of the non-native α-helical intermediate of thiol-modified β-lactoglobulin upon interaction with sodium n-alkyl sulfates at two different pH. J. Colloid Interface Sci. 2006 299 2 636 646 10.1016/j.jcis.2006.02.049 16554059
    [Google Scholar]
  37. Ghorbani R.H. Pazoki H. Rad S.A. Synthesis of magnetite nanoparticles by biological technique. Biosci. Biotechnol. Res. Asia 2017 14 2 631 633 10.13005/bbra/2488
    [Google Scholar]
  38. Khairan K. Jalil Z. Green synthesis of sulphur nanoparticles using aqueous garlic extract (Allium sativum). Rasayan J. Chem. 2019 12 1 1 6 10.31788/RJC.2019.1214073
    [Google Scholar]
  39. Castelló J. Gallardo M. Busquets M. A. Estelrich J. Chitosan (or alginate)-coated iron oxide nanoparticles: A comparative study. Colloids Surf. A: Physicochem. Eng. 2015 2015 468151 468158 10.1016/j.colsurfa.2014.12.031
    [Google Scholar]
  40. Hussein M.Z. Ali A.S. Geilich B. Zowalaty E.M. Webster T. Synthesis, characterization, and antimicrobial activity of an ampicillin-conjugated magnetic nanoantibiotic for medical applications. Int. J. Nanomed. 2014 9 3801 3814 10.2147/IJN.S61143 25143729
    [Google Scholar]
  41. Wang L. Hu C. Shao L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 2017 12 1227 1249 10.2147/IJN.S121956 28243086
    [Google Scholar]
  42. Arman S. Hadavi M. Rezvani-Noghani A. Bakhtparvar A. Fotouhi M. Farhang A. Mokaberi P. Taheri R. Chamani J. Cellulose nanocrystals from celery stalk as quercetin scaffolds: A novel perspective of human holo‐transferrin adsorption and digestion behaviours. Luminescence 2024 39 1 e4634 10.1002/bio.4634 38286605
    [Google Scholar]
  43. Vihodceva S. Šutka A. Sihtmäe M. Rosenberg M. Otsus M. Kurvet I. Smits K. Bikse L. Kahru A. Kasemets K. Antibacterial activity of positively and negatively charged hematite (α-Fe2O3) nanoparticles to Escherichia coli, Staphylococcus aureus and Vibrio fischeri. Nanomaterials 2021 11 3 652 10.3390/nano11030652 33800165
    [Google Scholar]
  44. Braim S.F. Razak N.A.N.A.N. Aziz A.A. Ismael Q.L. Sodipo K.B. Ultrasound assisted chitosan coated iron oxide nanoparticles: Influence of ultrasonic irradiation on the crystallinity, stability, toxicity and magnetization of the functionalized nanoparticles. Ultrason. Sonochem. 2022 88 106072 10.1016/j.ultsonch.2022.106072
    [Google Scholar]
  45. Sathiyaseelan A. Saravanakumar K. Mariadoss A.V.A. Wang M.H. Antimicrobial and wound healing properties of FeO fabricated chitosan/PVA nanocomposite sponge. Antibiotics 2021 10 5 524 10.3390/antibiotics10050524 34063621
    [Google Scholar]
  46. Golmohammadi R. Najar-Peerayeh S. TohidiMoghadam, T.; Hosseini, S.M.J. Synergistic antibacterial activity and wound healing properties of selenium-chitosan-mupirocinnanohybrid system: An in vivo study on rat diabetic staphylococcus aureuswound infection model. Sci. Rep. 2020 2854 1 2854 10.1038/s41598‑020‑59510‑5
    [Google Scholar]
  47. Cheng L. Zhang S. Zhang Q. Gao W. Mu S. Wang B. Wound healing potential of silver nanoparticles from Hybanthus enneaspermus on rats. Heliyon 2024 10 17 e36118 10.1016/j.heliyon.2024.e36118 39286104
    [Google Scholar]
  48. Chamani J. Energetic domains analysis of bovine α-lactalbumin upon interaction with copper and dodecyl trimethylammonium bromide. J. Mol. Struct. 2010 979 1-3 227 234 10.1016/j.molstruc.2010.06.035
    [Google Scholar]
  49. Niveditha S. Veetil V.T. Rajeeve A.D. Cheriyan S. Yamuna R. Karthega M. Wound healing applications of β-cyclodextrin capped zinc sulphide nanoparticles impregnated electrospun polymeric nanofibrous scaffold. J. Drug Deliv. Sci. Technol. 2024 95 105597 10.1016/j.jddst.2024.105597
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018263115250212075106
Loading
/content/journals/cdd/10.2174/0115672018263115250212075106
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test