Skip to content
2000
image of Antibacterial Activity and Characterization of CaO Nanoparticles Synthesized from Eggshell

Abstract

Introduction

With an average crystallographic size of 8.67 nm, we studied the antibacterial properties of CaO nanoparticles against microorganisms. The CaO NPs used in this study were synthesized using a simple soft chemical method.

Methods

To assess antibacterial activity, three methods were employed: the live count (LC) method, the agar cup method, and the minimum inhibitory concentration (MIC) approach. The CaO nanoparticles used in this study were produced using a simple soft chemical method.

Results

TEM study revealed that the application of nanoparticles disrupted the cell walls of pathogens.

Conclusion

We can conclude from this work that the lethal effect rises with CaO nanoparticle concentration. According to this research, CaO NPs seem like a good option for creating novel antibacterial drugs that are more effective against infections. The dose amount may be used in therapeutic settings. Considering this, the application of CaO nanoparticles as antibacterial agents could result in effective experiments.

Loading

Article metrics loading...

/content/journals/cbiot/10.2174/0122115501354485250114094914
2025-01-23
2025-04-06
Loading full text...

Full text loading...

References

  1. Kumari S. Raturi S. Kulshrestha S. Chauhan K. Dhingra S. András K. Thu K. Khargotra R. Singh T. A comprehensive review on various techniques used for synthesizing nanoparticles. J. Mater. Res. Technol. 2023 27 1739 1763 10.1016/j.jmrt.2023.09.291
    [Google Scholar]
  2. Dhaka A. Chand Mali S. Sharma S. Trivedi R. A review on biological synthesis of silver nanoparticles and their potential applications. Results in Chemistry 2023 6 101108 10.1016/j.rechem.2023.101108
    [Google Scholar]
  3. Baker R.E. Mahmud A.S. Miller I.F. Rajeev M. Rasambainarivo F. Rice B.L. Takahashi S. Tatem A.J. Wagner C.E. Wang L.F. Wesolowski A. Metcalf C.J.E. Infectious disease in an era of global change. Nat. Rev. Microbiol. 2022 20 4 193 205 10.1038/s41579‑021‑00639‑z 34646006
    [Google Scholar]
  4. Kirthika S.K. Goel G. Matthews A. Goel S. Review of the untapped potentials of antimicrobial materials in the construction sector. Prog. Mater. Sci. 2023 133 101065 10.1016/j.pmatsci.2022.101065
    [Google Scholar]
  5. Liang X. Dai R. Chang S. Wei Y. Zhang B. Antibacterial mechanism of biogenic calcium oxide and antibacterial activity of calcium oxide/polypropylene composites. Colloids Surf. A Physicochem. Eng. Asp. 2022 650 129446 10.1016/j.colsurfa.2022.129446
    [Google Scholar]
  6. Grover C. Shetty N. Evaluation of calcium ion release and change in pH on combining calcium hydroxide with different vehicles. Contemp. Clin. Dent. 2014 5 4 434 439 10.4103/0976‑237X.142803 25395755
    [Google Scholar]
  7. Kaushal P. Maity D. Awasthi R. Nano-green: Harnessing the potential of plant extracts for sustainable antimicrobial metallic nanoparticles. J. Drug Del. Sci. Tech. 2024 94 5 105488 10.1016/j.jddst.2024.105488
    [Google Scholar]
  8. Menezes L.B. Pâmela C.L.M. Druzian D.M. Yolice P.M.R. André G. Giovani P. Espinosa D.C.R. Leonardo S.W. Calcium oxide nanoparticles: Biosynthesis, characterization and photocatalytic activity for application in yellow tartrazine dye removal. JPPA 2024 447 115182
    [Google Scholar]
  9. Marquis G. Ramasamy B. Banwarilal S. Munusamy A.P. Evaluation of antibacterial activity of plant mediated CaO nanoparticles using C issus quadrangularis extract. J. Photochem. Photobiol. B 2016 155 28 33 10.1016/j.jphotobiol.2015.12.013 26723000
    [Google Scholar]
  10. Godoy-Gallardo M. Eckhard U. Delgado L.M. de Roo Puente Y.J.D. Hoyos-Nogués M. Gil F.J. Perez R.A. Antibacterial approaches in tissue engineering using metal ions and nanoparticles: From mechanisms to applications. Bioact. Mater. 2021 6 12 4470 4490 10.1016/j.bioactmat.2021.04.033 34027235
    [Google Scholar]
  11. Raskar N. Dake D. Khawal H. Deshpande U. Asokan K. Dole B. Development of oxygen vacancies and surface defects in Mn-doped ZnO nanoflowers for enhancing visible light photocatalytic activity. SN Applied Sciences 2020 2 8 1403 10.1007/s42452‑020‑3053‑0
    [Google Scholar]
  12. Gao F. Shao T. Yu Y. Xiong Y. Yang L. Surface-bound reactive oxygen species generating nanozymes for selective antibacterial action. Nat. Commun. 2021 12 1 745 10.1038/s41467‑021‑20965‑3 33531505
    [Google Scholar]
  13. Wang L. Hu C. Shao L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomedicine 2017 12 1227 1249 10.2147/IJN.S121956 28243086
    [Google Scholar]
  14. Zhang Q.Y. Yan Z.B. Meng Y.M. Hong X.Y. Shao G. Ma J.J. Cheng X.R. Liu J. Kang J. Fu C.Y. Antimicrobial peptides: Mechanism of action, activity and clinical potential. Mil. Med. Res. 2021 8 1 48 10.1186/s40779‑021‑00343‑2 34496967
    [Google Scholar]
  15. Nawaz N. Wen S. Wang F. Nawaz S. Raza J. Iftikhar M. Usman M. Lysozyme and its application as antibacterial agent in food industry. Molecules 2022 27 19 6305 10.3390/molecules27196305 36234848
    [Google Scholar]
  16. Anees Ahmad S. Sachi Das S. Khatoon A. Tahir Ansari M. Afzal M. Saquib Hasnain M. Kumar Nayak A. Bactericidal activity of silver nanoparticles: A mechanistic review. Mater. Sci. Energy Technol. 2020 3 756 769 10.1016/j.mset.2020.09.002
    [Google Scholar]
  17. Slavin Y.N. Asnis J. Häfeli U.O. Bach H. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J. Nanobiotechnology 2017 15 1 65 10.1186/s12951‑017‑0308‑z 28974225
    [Google Scholar]
  18. Maji J. Pandey S. Basu S. The electrical transport and antibacterial properties of Fe doped MgO nanoparticles synthesized by a soft chemical technique. Biotechnol. Notes 2023 4 150 159 10.1016/j.biotno.2023.12.002 39416923
    [Google Scholar]
  19. Springstein B.L. Weissenbach J. Koch R. Stücker F. Stucken K. The role of the cytoskeletal proteins MreB and FtsZ in multicellular cyanobacteria. FEBS Open Bio 2020 10 12 2510 2531 10.1002/2211‑5463.13016 33112491
    [Google Scholar]
  20. Li H. Gao T. MreB and MreC act as the geometric moderators of the cell wall synthetic machinery in Thermus thermophiles. Microbiol. Res. 2021 243 126655 10.1016/j.micres.2020.126655 33279728
    [Google Scholar]
  21. Doaa A.A. Naeima M. H. Y. Antimicrobial effects of calcium oxide nanoparticles and some spices in minced meat. ARC J. Anim. Vet. Sci. 2017 3 2 38 45 10.20431/2455‑2518.0302004
    [Google Scholar]
/content/journals/cbiot/10.2174/0122115501354485250114094914
Loading
/content/journals/cbiot/10.2174/0122115501354485250114094914
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test