Skip to content
2000
Volume 16, Issue 10
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Background: Hepatocellular Carcinoma (HCC) is one of the most common malignant tumors. Due to the insidious onset and poor prognosis, most patients have reached the advanced stage at the time of diagnosis. Objective: Studies have shown that Dynamic Network Biomarkers (DNB) can effectively identify the critical state of complex diseases such as HCC from normal state to disease state. Therefore, it is very important to detect DNB efficiently and reliably. Methods: This paper selects a dataset containing eight HCC disease states. First, an individual-specific network is constructed for each sample and features are extracted. In the context of this network, a simulated annealing algorithm is used to search for potential dynamic network biomarker modules, and the evolution of HCC is determined. Results: In fact, in the period of Low-Grade Dysplasia (LGD) and High-Grade Dysplasia (HGD), DNB sends an indicative warning signal, which means that liver dysplasia is a very important critical state in the development of HCC disease. Compared with landscape dynamic network biomarkers method (LDNB), our method can not only describe the statistical characteristics of each disease state, but also yield better results including getting more DNBs enriched in HCC related pathways. Conclusion: The results of this study may be of great significance to the prevention and early diagnosis of HCC.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/1574893616666210727144206
2021-12-01
2025-06-01
Loading full text...

Full text loading...

/content/journals/cbio/10.2174/1574893616666210727144206
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test