Skip to content
2000
Volume 16, Issue 8
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Background: Anti-Inflammatory Peptides (AIPs) are potent therapeutic agents for inflammatory and autoimmune disorders due to their high specificity and minimal toxicity under normal conditions. Therefore, it is greatly significant and beneficial to identify AIPs for further discovering novel and efficient AIPs-based therapeutics. Recently, three computational approaches, which can effectively identify potential AIPs, have been developed based on machine learning algorithms. However, there are several challenges with the existing three predictors. Objective: A novel machine learning algorithm needs to be proposed to improve the AIPs prediction accuracy. Methods: This study attempts to improve the recognition of AIPs by employing multiple primary sequence-based feature descriptors and an efficient feature selection strategy. By sorting features through four enhanced minimal redundancy maximal relevance (emRMR) methods, and then attaching seven different classifiers wrapper methods based on the sequential forward selection algorithm (SFS), we proposed a hybrid feature selection technique emRMR-SFS to optimize feature vectors. Furthermore, by evaluating seven classifiers trained with the optimal feature subset, we developed the Extremely Randomized Tree (ERT) based predictor named PREDAIP for identifying AIPs. Results: We systematically compared the performance of PREDAIP with the existing tools on independent test dataset. It demonstrates the effectiveness and power of the PREDAIP. Conclusion: The correlation criteria used in emRMR would affect the selection results of the optimal feature subset at the SFS-wrapper stage, which justifies the necessity for considering different correlation criteria in emRMR.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/1574893616666210601111157
2021-10-01
2025-06-17
Loading full text...

Full text loading...

/content/journals/cbio/10.2174/1574893616666210601111157
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test