Skip to content
2000
Volume 16, Issue 6
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Background: Protein-protein interactions (PPI) play a vital role in a wide range of biological processes starting from cell-cell interactions to developmental control in all organisms. However, experimental identification of PPI is often laborious, time-consuming and costly compared to computational prediction. There are several computational prediction models in the literature based on complete training samples, but none of them dealt with the partial training samples. Objective: The objective of this work was to develop an effective PPI prediction model for Arabidopsis Thaliana using partial training samples in a machine learning framework. Methods: We proposed an effective computational PPI prediction model by combining random forest (RF) classifier and autocorrelation (AC) sequence encoding features with 1:2 ratio of positive- PPI and unknown-PPI samples. Results: We observed that the proposed prediction model produces the highest average performance scores of sensitivity (94.62%), AUC (0.92) and pAUC (0.189) with the training datasets and sensitivity (88.14%), AUC (0.89) and pAUC (0.176) with the test datasets of 5-fold crossvalidation compared to other candidate predictors based on LDA, LOGI, ADA, NB, KNN & SVM classifiers. It also computed the highest performance scores of TPR (91.82%) and pAUC (0.174) at FPR= 20% with AUC (0.948) compared to other candidate predictors. Conclusion: Overall performance of the developed model revealed that our proposed predictor might be useful to elucidate the biological function of unseen PPIs from a large number of candidate proteins in Arabidopsis thaliana.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/1574893616666210204145254
2021-07-01
2024-11-04
Loading full text...

Full text loading...

/content/journals/cbio/10.2174/1574893616666210204145254
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test