Skip to content
2000
Volume 16, Issue 2
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Background: Dry Weight (DW) is the lowest weight after dialysis, and patients with lower weight usually have symptoms of hypotension and shock. Several clinical-based approaches have been presented to assess the dry weight of hemodialysis patients. However, these traditional methods all depend on special instruments and professional technicians. Objective: In order to avoid this limitation, we need to find a machine-independent way to assess dry weight, therefore we collected some clinical influencing characteristic data and constructed a Machine Learning-based (ML) model to predict the dry weight of hemodialysis patients. Methods: In this paper, 476 hemodialysis patients' demographic data, anthropometric measurements, and Bioimpedance spectroscopy (BIS) were collected. Among them, these patients' age, sex, Body Mass Index (BMI), Blood Pressure (BP) and Heart Rate (HR) and Years of Dialysis (YD) were closely related to their dry weight. All these relevant data were used to enter the regression equation. Multiple Kernel Support Vector Regression-based on Maximizes the Average Similarity (MKSVRMAS) model was proposed to predict the dry weight of hemodialysis patients. Results: The experimental results show that dry weight is positively correlated with BMI and HR. And age, sex, systolic blood pressure, diastolic blood pressure and hemodialysis time are negatively correlated with dry weight. Moreover, the Root Mean Square Error (RMSE) of our model was 1.3817. Conclusion: Our proposed model could serve as a viable alternative for dry weight estimation of hemodialysis patients, thus providing a new way for clinical practice.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/1574893615999200614172536
2021-02-01
2025-06-19
Loading full text...

Full text loading...

/content/journals/cbio/10.2174/1574893615999200614172536
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test