Skip to content
2000
Volume 16, Issue 1
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Background: Microarray data is widely utilized for disease analysis and diagnosis. However, it is hard to process them directly and achieve high classification accuracy due to the intrinsic characteristics of high dimensionality and small size samples. As an important data preprocessing technique, feature selection is usually used to reduce the dimensionality of some datasets. Methods: Given the limitations of employing filter or wrapper approaches individually for feature selection, in the study, a novel hybrid filter-wrapper approach, CS_IFOA, is proposed for high dimensional datasets. First, the Chi-square Test is utilized to filter out some irrelevant or redundant features. Next, an improved binary Fruit Fly Optimization algorithm is conducted to further search the optimal feature subset without degrading the classification accuracy. Here, the KNN classifier with the 10-fold-CV is utilized to evaluate the classification accuracy. Results: Extensive experimental results on six benchmark biomedical datasets show that the proposed CS-IFOA can achieve superior performance compared with other state-of-the-art methods. The CS-IFOA can get a smaller number of features while achieving higher classification accuracy. Furthermore, the standard deviation of the experimental results is relatively small, which indicates that the proposed algorithm is relatively robust. Conclusion: The results confirmed the efficiency of our approach in identifying some important genes for high-dimensional biomedical datasets, which can be used as an ideal pre-processing tool to help optimize the feature selection process, and improve the efficiency of disease diagnosis.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/1574893615666200324125535
2021-01-01
2025-06-23
Loading full text...

Full text loading...

/content/journals/cbio/10.2174/1574893615666200324125535
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test