Skip to content
2000
Volume 15, Issue 9
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Background: Cholera, a diarrheal illness, causes millions of deaths worldwide due to large outbreaks. The monoclonal antibody used as therapeutic purposes of cholera is prone to be unstable due to various factors including self-aggregation. Objectives: In this bioinformatic analysis, we identified the aggregation prone regions (APRs) of antibody sequences of different immunogens (i.e., CTB, ZnM-CTB, ZnP-CTB, TcpA-CT-CTB, ZnM-TcpA-CT-CTB, ZnP-TcpA-CT-CTB, ZnM-TcpA, ZnP-TcpA, TcpA-CT-TcpA, ZnM-TcpACT- TcpA, ZnP-TcpA-CT-TcpA, Ogawa, Inaba and ZnM-Inaba) raised against Vibrio cholerae. Methods: To determine APRs in antibody sequences that were generated after immunizing Vibrio cholerae immunogens on Mus musculus, a total of 94 sequences were downloaded as FASTA format from a protein database and the algorithms such as Tango, Waltz, PASTA 2.0, and AGGRESCAN were followed to analyze probable APRs in all of the sequences. Results: A remarkably high number of regions in the monoclonal antibodies were identified to be APRs which could explain a cause of instability/short term protection of the anticholera vaccine. Conclusion: To increase the stability, it would be interesting to eliminate the APR residues from the therapeutic antibodies in such a way that the antigen-binding sites or the complementarity determining region loops involved in antigen recognition are not disrupted.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/1574893615666200106120504
2020-11-01
2025-06-18
Loading full text...

Full text loading...

/content/journals/cbio/10.2174/1574893615666200106120504
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test