Skip to content
2000
Volume 15, Issue 5
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Background: Bioinformatics software for RNA-seq analysis has a high computational requirement in terms of the number of CPUs, RAM size, and processor characteristics. Specifically, de novo transcriptome assembly demands large computational infrastructure due to the massive data size, and complexity of the algorithms employed. Comparative studies on the quality of the transcriptome yielded by de novo assemblers have been previously published, lacking, however, a hardware efficiency-oriented approach to help select the assembly hardware platform in a cost-efficient way. Objective: We tested the performance of two popular de novo transcriptome assemblers, Trinity and SOAPdenovo-Trans (SDNT), in terms of cost-efficiency and quality to assess limitations, and provided troubleshooting and guidelines to run transcriptome assemblies efficiently. Methods: We built virtual machines with different hardware characteristics (CPU number, RAM size) in the Amazon Elastic Compute Cloud of the Amazon Web Services. Using simulated and real data sets, we measured the elapsed time, cost, CPU percentage and output size of small and large data set assemblies. Results: For small data sets, SDNT outperformed Trinity by an order the magnitude, significantly reducing the time duration and costs of the assembly. For large data sets, Trinity performed better than SDNT. Both the assemblers provide good quality transcriptomes. Conclusion: The selection of the optimal transcriptome assembler and provision of computational resources depend on the combined effect of size and complexity of RNA-seq experiments.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/1574893615666191219095817
2020-06-01
2025-06-18
Loading full text...

Full text loading...

/content/journals/cbio/10.2174/1574893615666191219095817
Loading

  • Article Type:
    Research Article
Keyword(s): Cloud computing; cost-efficiency; magnitude; quality; RNA-seq; transcriptome
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test