Skip to content
2000
Volume 15, Issue 6
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Background: Lectins are a diverse group of glycoproteins or glycoconjugate proteins that can be extracted from plants, invertebrates and higher animals. Cancerlectins, a kind of lectins, which play a key role in the process of tumor cells interacting with each other and are being employed as therapeutic agents. A full understanding of cancerlectins is significant because it provides a tool for the future direction of cancer therapy. Objective: To develop an accurate and practically useful timesaving tool to identify cancerlectins. A novel sequence-based method is proposed along with a correlative webserver to access the proposed tool. Methods: Firstly, protein features were extracted in a newly feature building way termed, g-gap tripeptide composition. After which a proposed cascade linear discriminant analysis (Cascade LDA) is used to alleviate the high dimensional difficulties with the Analysis Of Variance (ANOVA) as a feature importance criterion. Finally, Support Vector Machine (SVM) is used as the classifier to identify cancerlectins. Results: The proposed method achieved an accuracy of 91.34% with sensitivity of 89.89%, specificity of 92.48% and an 0.8318 Mathew’s correlation coefficient based on only 13 fusion features in jackknife cross validation, the result of which is superior to other published methods in this domain. Conclusion: In this study, a new method based only on primary structure of protein is proposed and experimental results show that it could be a promising tool to identify cancerlectins. An openaccess webserver is made available in this work to facilitate other related works.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/1574893614666190730103156
2020-07-01
2025-05-21
Loading full text...

Full text loading...

/content/journals/cbio/10.2174/1574893614666190730103156
Loading

  • Article Type:
    Research Article
Keyword(s): ANOVA; Cancerlectin; cascade LDA; g-gap tripeptide composition; protein; SVM
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test