Skip to content
2000
Volume 14, Issue 4
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Background: Biomolecular-level event extraction is one of the most important branches of information extraction. With the rapid growth of biomedical literature, it is difficult for researchers to manually obtain information of interest, e.g. unknown information of threatening human disease or some biological processes. Therefore, researchers are interested in automatically acquiring information of biomolecular-level events. However, the annotated biomolecular-level event corpus is limited and highly imbalanced, which affects the performance of the classification algorithms and can even lead to over-fitting. Method: In this paper, a new approach using the Pairwise model and convolutional neural network for biomolecular-level event extraction is introduced. The method can identify more accurate positive instances from unlabeled data to enlarge the labeled data. First, unlabeled samples are categorized using the Pairwise model. Then, the shortest dependency path with additional information is generated. Furthermore, two input forms with a new representation of the convolutional neural network model, which are dependency word sequence and dependency relation sequence are presented. Finally, with the sample selection strategy, the expanded labeled samples from unlabeled domain corpus incrementally enlarge the training data to improve the performance of the classifier. Result & Conclusion: Our proposed method achieved better performance than other excellent systems. This is due to our new representation of generated short sentence and proposed sample selection strategy, which greatly improved the accuracy of classification. The extensive experimental results indicate that the new method can effectively inculcate unlabeled data to improve the performance of classifier for biomolecular-level events extraction.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/1574893614666190204153531
2019-05-01
2024-11-19
Loading full text...

Full text loading...

/content/journals/cbio/10.2174/1574893614666190204153531
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test