Skip to content
2000
Volume 14, Issue 4
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Background: Stroke is one of the major causes for the momentary/permanent disability in the human community. Usually, stroke will originate in the brain section because of the neurological deficit and this kind of brain abnormality can be predicted by scrutinizing the periphery of brain region. Magnetic Resonance Image (MRI) is the extensively considered imaging procedure to record the interior sections of the brain to support visual inspection process. Objective: In the proposed work, a semi-automated examination procedure is proposed to inspect the province and the severity of the stroke lesion using the MRI. Method: Recently discovered heuristic approach called the Social Group Optimization (SGO) algorithm is considered to pre-process the test image based on a chosen image multi-thresholding procedure. Later, a chosen segmentation procedure is considered in the post-processing section to mine the stroke lesion from the pre-processed image. Results: In this paper, the pre-processing work is executed with the well known thresholding approaches, such as Shannon’s entropy, Kapur’s entropy and Otsu’s function. Similarly, the postprocessing task is executed using most successful procedures, such as level set, active contour and watershed algorithm. Conclusion: The proposed procedure is experimentally inspected using the benchmark brain stroke database known as Ischemic Stroke Lesion Segmentation (ISLES 2015) challenge database. The results of this experimental work authenticates that, Shannon’s approach along with the LS segmentation offers superior average values compared with the other approaches considered in this research work.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/1574893614666181220094918
2019-05-01
2024-11-19
Loading full text...

Full text loading...

/content/journals/cbio/10.2174/1574893614666181220094918
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test