Skip to content
2000
Volume 8, Issue 1
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Simultaneous activation of the agonist and antagonist muscles surrounding a joint, called co-contraction, is suggested to play a role in increasing joint stiffness to improve movement accuracy. However, it has not been clarified how co-contraction is related to movement accuracy, as most models for motor planning and control cannot deal with muscle co-contraction. In this study, the muscle activation and joint stiffness in reaching movements were studied under three different requirement levels of endpoint accuracy using a two-joint six-muscle model and an approximately optimal control. We carried out simulations of biological arm movements for a center-out reaching task under different accuracy demands with different types of motor noise and demonstrated time-varying co-contraction and a double-peaked jointstiffness profile. Furthermore, we showed that the strength of co-contraction and joint stiffness increased depending on the required accuracy level under signal-dependent noise, the magnitude of which was proportional to the motor command but not to additive Gaussian noise. We concluded that the optimal control is a valid model for the human motor control system and that signal-dependent noise is essential to induce co-contraction depending on accuracy demands.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/157489313804871632
2013-02-01
2025-05-04
Loading full text...

Full text loading...

/content/journals/cbio/10.2174/157489313804871632
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test