Skip to content
2000
Volume 5, Issue 2
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Among childhood cancer, acute lymphoblastic leukaemia (ALL) has been the most extensively studied propelled by the desire to improve survival rate. DNA microarray technology has expanded rapidly providing an extensive source of data that promise to pave the way for better prognosis and diagnosis of cancer and identify key targets for drug development. DNA microarray data analysis has been carried out using statistical analysis as well as machine learning and data mining approaches. In this paper, we present a comprehensive review of machine learning approaches that have been used on ALL microarray data. Followed by the research conducted by biological and medical childhood leukaemia research groups, machine learning has been used to enhance cancer diagnosis and subtype classification, development of novel therapeutic approaches and accurate identification of risk stratification of patients. These methods have been used in four major areas of microarray data analysis: gene selection, clustering, classification and pathway analysis. Each machine learning algorithm has its own advantages and drawbacks. Highlights of these as well as some outstanding future research and challenges are summarized in this paper. This review aims to serve as a starting point for those interested in microarray analysis in general and cancer research in particular.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/157489310791268450
2010-06-01
2025-05-19
Loading full text...

Full text loading...

/content/journals/cbio/10.2174/157489310791268450
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test