Skip to content
2000
image of PDTDAHN: Predicting Drug-Target-Disease Associations using a Heterogeneous Network

Abstract

Background

Disease is a major threat to life, and extensive efforts have been made over the past centuries to develop effective treatments. Identifying drug-disease and disease-target associations is crucial for therapeutic advancements, whereas drug-target associations facilitate the design of more effective treatment strategies. However, traditional experimental approaches for identifying these associations are costly and time-consuming. Numerous computational models have been developed to predict drug-target, drug-disease, and disease-target associations. However, these models are designed individually and cannot directly predict drug-target-disease associations, which involve interconnections among drugs, targets, and diseases. Such triple associations provide deeper insights into disease mechanisms and therapeutic interventions by capturing high-order associations.

Objective

This study proposes a computational model named PDTDAHN to predict drug-target-disease triple associations.

Method

Six association types retrieved from public databases are used to construct a heterogeneous network comprising drugs, targets, and diseases. The network embedding algorithm Mashup is applied to extract features for drugs, targets, and diseases, which are then combined to represent each drug-target-disease association. The classification model is trained using LightGBM.

Results

Cross-validation on eight datasets demonstrates the high performance of PDTDAHN, with AUROC and AUPR exceeding 0.9. This model outperforms previous models based on pairwise association predictions.

Conclusion

The proposed model effectively predicts drug-target-disease triple associations.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936359702250120114240
2025-02-10
2025-05-30
Loading full text...

Full text loading...

References

  1. Wang A. Wang M. Drug-target interaction prediction via dual laplacian graph regularized logistic matrix factorization. BioMed Res. Int. 2021 2021 1 10 10.1155/2021/5599263 33855072
    [Google Scholar]
  2. Kuang Q. Li Y. Wu Y. Li R. Dong Y. Li Y. Xiong Q. Huang Z. Li M. A kernel matrix dimension reduction method for predicting drug-target interaction. Chemom. Intell. Lab. Syst. 2017 162 Suppl. C 104 110 10.1016/j.chemolab.2017.01.016
    [Google Scholar]
  3. Hao M. Bryant S.H. Wang Y. Predicting drug-target interactions by dual-network integrated logistic matrix factorization. Sci. Rep. 2017 7 1 40376 10.1038/srep40376 28079135
    [Google Scholar]
  4. Ezzat A. Zhao P. Wu M. Li X.L. Kwoh C.K. Drug-target interaction prediction with graph regularized matrix factorization. IEEE/ACM Trans. Comput. Biol. Bioinformatics 2017 14 3 646 656 10.1109/TCBB.2016.2530062 26890921
    [Google Scholar]
  5. Luo Y. Zhao X. Zhou J. Yang J. Zhang Y. Kuang W. Peng J. Chen L. Zeng J. A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information. Nat. Commun. 2017 8 1 573 10.1038/s41467‑017‑00680‑8 28924171
    [Google Scholar]
  6. Cheng F. Liu C. Jiang J. Lu W. Li W. Liu G. Zhou W. Huang J. Tang Y. Prediction of drug-target interactions and drug repositioning via network-based inference. PLOS Comput. Biol. 2012 8 5 e1002503 10.1371/journal.pcbi.1002503 22589709
    [Google Scholar]
  7. Chen X. Liu M.X. Yan G.Y. Drug–target interaction prediction by random walk on the heterogeneous network. Mol. Biosyst. 2012 8 7 1970 1978 10.1039/c2mb00002d 22538619
    [Google Scholar]
  8. Yamanishi Y. Kotera M. Kanehisa M. Goto S. Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework. Bioinformatics 2010 26 12 i246 i254 10.1093/bioinformatics/btq176 20529913
    [Google Scholar]
  9. Chen X. Yan C.C. Zhang X. Zhang X. Dai F. Yin J. Zhang Y. Drug–target interaction prediction: databases, web servers and computational models. Brief. Bioinform. 2016 17 4 696 712 10.1093/bib/bbv066 26283676
    [Google Scholar]
  10. Ding H. Takigawa I. Mamitsuka H. Zhu S. Similarity-based machine learning methods for predicting drug–target interactions: A brief review. Brief. Bioinform. 2014 15 5 734 747 10.1093/bib/bbt056 23933754
    [Google Scholar]
  11. Ezzat A. Wu M. Li X.L. Kwoh C.K. Computational prediction of drug–target interactions using chemogenomic approaches: An empirical survey. Brief. Bioinform. 2019 20 4 1337 1357 10.1093/bib/bby002 29377981
    [Google Scholar]
  12. Luo H. Li M. Yang M. Wu F.X. Li Y. Wang J. Biomedical data and computational models for drug repositioning: A comprehensive review. Brief. Bioinform. 2021 22 2 1604 1619 10.1093/bib/bbz176 32043521
    [Google Scholar]
  13. Gottlieb A. Stein G.Y. Ruppin E. Sharan R. PREDICT: A method for inferring novel drug indications with application to personalized medicine. Mol. Syst. Biol. 2011 7 1 496 10.1038/msb.2011.26 21654673
    [Google Scholar]
  14. Wu G. Liu J. Wang C. Predicting drug-disease interactions by semi-supervised graph cut algorithm and three-layer data integration. BMC Med. Genomics 2017 10 S5 Suppl. 5 79 10.1186/s12920‑017‑0311‑0 29297383
    [Google Scholar]
  15. Wu C. Gudivada R.C. Aronow B.J. Jegga A.G. Computational drug repositioning through heterogeneous network clustering. BMC Syst. Biol. 2013 7 S5 Suppl. 5 S6 10.1186/1752‑0509‑7‑S5‑S6 24564976
    [Google Scholar]
  16. Luo H. Wang J. Li M. Luo J. Peng X. Wu F.X. Pan Y. Drug repositioning based on comprehensive similarity measures and Bi-Random walk algorithm. Bioinformatics 2016 32 17 2664 2671 10.1093/bioinformatics/btw228 27153662
    [Google Scholar]
  17. Wang W. Yang S. Zhang X. Li J. Drug repositioning by integrating target information through a heterogeneous network model. Bioinformatics 2014 30 20 2923 2930 10.1093/bioinformatics/btu403 24974205
    [Google Scholar]
  18. Martínez V. Navarro C. Cano C. Fajardo W. Blanco A. DrugNet: Network-based drug–disease prioritization by integrating heterogeneous data. Artif. Intell. Med. 2015 63 1 41 49 10.1016/j.artmed.2014.11.003 25704113
    [Google Scholar]
  19. Huang Y.F. Yeh H.Y. Soo V.W. Inferring drug-disease associations from integration of chemical, genomic and phenotype data using network propagation. BMC Med. Genomics 2013 6 S3 Suppl. 3 S4 10.1186/1755‑8794‑6‑S3‑S4 24565337
    [Google Scholar]
  20. Kawichai T. Suratanee A. Plaimas K. Meta-path based gene ontology profiles for predicting drug-disease associations. IEEE Access 2021 9 41809 41820 10.1109/ACCESS.2021.3065280
    [Google Scholar]
  21. Zhang M.L. Zhao B.W. Su X.R. He Y.Z. Yang Y. Hu L. RLFDDA: A meta-path based graph representation learning model for drug–disease association prediction. BMC Bioinformatics 2022 23 1 516 10.1186/s12859‑022‑05069‑z 36456957
    [Google Scholar]
  22. Liu X. Yi W. Xi B. Dai Q. Identification of drug-disease associations using a random walk with restart method and supervised learning. Comput. Math. Methods Med. 2022 2022 1 10 10.1155/2022/7035634 36262874
    [Google Scholar]
  23. Napolitano F. Zhao Y. Moreira V.M. Tagliaferri R. Kere J. D’Amato M. Greco D. Drug repositioning: A machine-learning approach through data integration. J. Cheminform. 2013 5 1 30 10.1186/1758‑2946‑5‑30 23800010
    [Google Scholar]
  24. Cui Z. Gao Y.L. Liu J.X. Wang J. Shang J. Dai L.Y. The computational prediction of drug-disease interactions using the dual-network L2,1-CMF method. BMC Bioinformatics 2019 20 1 5 10.1186/s12859‑018‑2575‑6 30611214
    [Google Scholar]
  25. Wang Y. Chen S. Deng N. Wang Y. Drug repositioning by kernel-based integration of molecular structure, molecular activity, and phenotype data. PLoS One 2013 8 11 e78518 10.1371/journal.pone.0078518 24244318
    [Google Scholar]
  26. Lu L. Yu H. DR2DI: A powerful computational tool for predicting novel drug-disease associations. J. Comput. Aided Mol. Des. 2018 32 5 633 642 10.1007/s10822‑018‑0117‑y 29687309
    [Google Scholar]
  27. Gao C.Q. Zhou Y.K. Xin X.H. Min H. Du P.F. DDA-SKF: Predicting drug–disease associations using similarity kernel fusion. Front. Pharmacol. 2022 12 784171 10.3389/fphar.2021.784171 35095495
    [Google Scholar]
  28. Yang Y. Chen L. Identification of drug–disease associations by using multiple drug and disease networks. Curr. Bioinform. 2022 17 1 48 59 10.2174/1574893616666210825115406
    [Google Scholar]
  29. Chen L. Chen K. Zhou B. Inferring drug-disease associations by a deep analysis on drug and disease networks. Math. Biosci. Eng. 2023 20 8 14136 14157 10.3934/mbe.2023632 37679129
    [Google Scholar]
  30. Yang K. Zhao X. Waxman D. Zhao X.M. Predicting drug-disease associations with heterogeneous network embedding. Chaos 2019 29 12 123109 10.1063/1.5121900 31893652
    [Google Scholar]
  31. Yu Z. Huang F. Zhao X. Xiao W. Zhang W. Predicting drug–disease associations through layer attention graph convolutional network. Brief. Bioinform. 2021 22 4 bbaa243 10.1093/bib/bbaa243 33078832
    [Google Scholar]
  32. Kang H. Hou L. Gu Y. Lu X. Li J. Li Q. Drug–disease association prediction with literature based multi-feature fusion. Front. Pharmacol. 2023 14 1205144 10.3389/fphar.2023.1205144 37284317
    [Google Scholar]
  33. Gao L. Cui H. Zhang T. Sheng N. Xuan P. Prediction of drug–disease associations by integrating common topologies of heterogeneous networks and specific topologies of subnets. Brief. Bioinform. 2022 23 1 bbab467 10.1093/bib/bbab467 34850815
    [Google Scholar]
  34. Ma J. Qin T. Xiang J. Disease-gene prediction based on preserving structure network embedding. Front. Aging Neurosci. 2023 15 1061892 10.3389/fnagi.2023.1061892 36896421
    [Google Scholar]
  35. Li Y. Guo Z. Wang K. Gao X. Wang G. End-to-end interpretable disease–gene association prediction. Brief. Bioinform. 2023 24 3 bbad118 10.1093/bib/bbad118 36987781
    [Google Scholar]
  36. Luo P. Xiao Q. Wei P.J. Liao B. Wu F.X. Identifying disease-gene associations with graph-regularized manifold learning. Front. Genet. 2019 10 270 10.3389/fgene.2019.00270 31001321
    [Google Scholar]
  37. Mastropietro A. De Carlo G. Anagnostopoulos A. XGDAG: explainable gene–disease associations via graph neural networks. Bioinformatics 2023 39 8 btad482 10.1093/bioinformatics/btad482 37531293
    [Google Scholar]
  38. Kim Y. Park J.H. Cho Y.R. Network-based approaches for disease-gene association prediction using protein-protein interaction networks. Int. J. Mol. Sci. 2022 23 13 7411 10.3390/ijms23137411 35806415
    [Google Scholar]
  39. Xiang J. Meng X. Zhao Y. Wu F.X. Li M. HyMM: Hybrid method for disease-gene prediction by integrating multiscale module structure. Brief. Bioinform. 2022 23 3 bbac072 10.1093/bib/bbac072 35275996
    [Google Scholar]
  40. Cho H. Berger B. Peng J. Compact integration of multi-network topology for functional analysis of genes. Cell Syst. 2016 3 6 540 548.e5 10.1016/j.cels.2016.10.017 27889536
    [Google Scholar]
  41. Mattingly C.J. Rosenstein M.C. Colby G.T. Forrest J.N. Jr Boyer J.L. The Comparative Toxicogenomics Database (CTD): A resource for comparative toxicological studies. J. Exp. Zoolog. A Comp. Exp. Biol. 2006 305A 9 689 692 10.1002/jez.a.307 16902965
    [Google Scholar]
  42. Davis A.P. Grondin C.J. Johnson R.J. Sciaky D. Wiegers J. Wiegers T.C. Mattingly C.J. Comparative Toxicogenomics Database (CTD): Update 2021. Nucleic Acids Res. 2021 49 D1 D1138 D1143 10.1093/nar/gkaa891 33068428
    [Google Scholar]
  43. Kuhn M. von Mering C. Campillos M. Jensen L.J. Bork P. STITCH: Interaction networks of chemicals and proteins. Nucleic Acids Res. 2008 36 Database issue D684 D688 18084021
    [Google Scholar]
  44. Szklarczyk D. Santos A. von Mering C. Jensen L.J. Bork P. Kuhn M. STITCH 5: Augmenting protein–chemical interaction networks with tissue and affinity data. Nucleic Acids Res. 2016 44 D1 D380 D384 10.1093/nar/gkv1277 26590256
    [Google Scholar]
  45. Mering C. Huynen M. Jaeggi D. Schmidt S. Bork P. Snel B. STRING: A database of predicted functional associations between proteins. Nucleic Acids Res. 2003 31 1 258 261 10.1093/nar/gkg034 12519996
    [Google Scholar]
  46. Wang J.Z. Du Z. Payattakool R. Yu P.S. Chen C.F. A new method to measure the semantic similarity of GO terms. Bioinformatics 2007 23 10 1274 1281 10.1093/bioinformatics/btm087 17344234
    [Google Scholar]
  47. Wang D. Wang J. Lu M. Song F. Cui Q. Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases. Bioinformatics 2010 26 13 1644 1650 10.1093/bioinformatics/btq241 20439255
    [Google Scholar]
  48. Wei H. Liu B. iCircDA-MF: Identification of circRNA-disease associations based on matrix factorization. Brief. Bioinform. 2020 21 4 1356 1367 10.1093/bib/bbz057 31197324
    [Google Scholar]
  49. Chen L. Gu J. Zhou B. PMiSLocMF: Predicting miRNA subcellular localizations by incorporating multi-source features of miRNAs. Brief. Bioinform. 2024 25 5 bbae386 10.1093/bib/bbae386 39154195
    [Google Scholar]
  50. Perozzi B. Al-Rfou R. Skiena S. Deepwalk: Online learning of social representations Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining 2014 701 710 10.1145/2623330.2623732
    [Google Scholar]
  51. Grover A. Leskovec J. node2vec: Scalable Feature Learning for Networks. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining ACM San Francisco, California, USA 2016 855 864
    [Google Scholar]
  52. Zhou J.P. Chen L. Guo Z.H. iATC-NRAKEL: An efficient multi-label classifier for recognizing anatomical therapeutic chemical classes of drugs. Bioinf. 2020 36 5 1391 1396 10.1093/bioinformatics/btz757 31593226
    [Google Scholar]
  53. Zhao X. Chen L. Guo Z.H. Liu T. Predicting drug side effects with compact integration of heterogeneous networks. Curr. Bioinform. 2019 14 8 709 720 10.2174/1574893614666190220114644
    [Google Scholar]
  54. Ye J. Wang S. Yang X. Tang X. Gene prediction of aging-related diseases based on DNN and Mashup. BMC Bioinf. 2021 22 1 597 10.1186/s12859‑021‑04518‑5 34920719
    [Google Scholar]
  55. Chen L. Zhao X. PCDA-HNMP: Predicting circRNA-disease association using heterogeneous network and meta-path. Math. Biosci. Eng. 2023 20 12 20553 20575 10.3934/mbe.2023909 38124565
    [Google Scholar]
  56. Tong H. Faloutsos C. Pan J. Fast random walk with restart and its applications. Sixth International Conference on Data Mining (ICDM’06) 2006 Hong Kong, China 613 622 10.1109/ICDM.2006.70
    [Google Scholar]
  57. Tong H. Faloutsos C. Pan J.Y. Random walk with restart: Fast solutions and applications. Knowl. Inf. Syst. 2008 14 3 327 346 10.1007/s10115‑007‑0094‑2
    [Google Scholar]
  58. Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. International joint Conference on artificial intelligence 1995 Lawrence Erlbaum Associates Ltd 1137 1145
    [Google Scholar]
  59. Ke G. Meng Q. Finley T. Wang T. Chen W. Ma W. Ye Q. Liu T.Y. Lightgbm: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 2017 30 3146 3154
    [Google Scholar]
  60. Pedregosa F. Varoquaux G. Gramfort A. Michel V. Thirion B. Grisel O. Blondel M. Prettenhofer P. Weiss R. Dubourg V. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011 12 2825 2830
    [Google Scholar]
  61. Matthews B.W. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta Protein Struct. 1975 405 2 442 451 10.1016/0005‑2795(75)90109‑9 1180967
    [Google Scholar]
  62. Ren J.X. Chen L. Guo W. Feng K.Y. Cai Y.D. Huang T. Patterns of gene expression profiles associated with colorectal cancer in colorectal mucosa by using machine learning methods. Comb. Chem. High Throughput Screen. 2024 27 19 2921 2934 10.2174/0113862073266300231026103844 37957897
    [Google Scholar]
  63. Ren J. Gao Q. Zhou X. Chen L. Guo W. Feng K. Huang T. Cai Y.D. Identification of key gene expression associated with quality of life after recovery from COVID-19. Med. Biol. Eng. Comput. 2024 62 4 1031 1048 10.1007/s11517‑023‑02988‑8 38123886
    [Google Scholar]
  64. Ren J. Zhou X. Huang K. Chen L. Guo W. Feng K. Huang T. Cai Y.D. Identification of key genes associated with persistent immune changes and secondary immune activation responses induced by influenza vaccination after COVID-19 recovery by machine learning methods. Comput. Biol. Med. 2024 169 107883 10.1016/j.compbiomed.2023.107883 38157776
    [Google Scholar]
  65. Chen L. Li L. Prediction of drug pathway-based disease classes using multiple properties of drugs. Curr. Bioinform. 2024 19 9 859 872 10.2174/0115748936284973240105115444
    [Google Scholar]
  66. Powers D. Evaluation: From precision, recall and f-measure to roc., informedness, markedness & correlation. J. Mach. Learn. Technol. 2011 2 1 37 63
    [Google Scholar]
  67. Chen L. Hu H. MBPathNCP: A metabolic pathway prediction model for chemicals and enzymes based on network consistency projection. Curr. Bioinform. 2024 20 10.2174/0115748936321359240827050752
    [Google Scholar]
  68. Chen L. Zhang C. Xu J. Predict E.F.C. PredictEFC: A fast and efficient multi-label classifier for predicting enzyme family classes. BMC Bioinformatics 2024 25 1 50 10.1186/s12859‑024‑05665‑1 38291384
    [Google Scholar]
  69. Cortes C. Vapnik V. Support-vector networks. Mach. Learn. 1995 20 3 273 297 10.1007/BF00994018
    [Google Scholar]
  70. Chen T. Guestrin C. XGBoost: A scalable tree boosting system. The 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 2016 Association for Computing Machinery 785 794
    [Google Scholar]
  71. Breiman L. Random forests. Mach. Learn. 2001 45 1 5 32 10.1023/A:1010933404324
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936359702250120114240
Loading
/content/journals/cbio/10.2174/0115748936359702250120114240
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test