Skip to content
2000
image of A Review of Biosequences Alignment, Matching, and Mining Based on GPU

Abstract

Sequence alignment, pattern matching, and mining are important cornerstones in bioinformatics, and they include identifying genome structure, protein function, and biological metabolic regulatory network. However, because it helps speed up the dealing process, the parallel sequential pattern recognition method has gained attention as data volume has increased. This review summarizes the GPU-based sequence alignment, pattern matching, and mining with the tools and their applications in bioinformatics. After giving an overview of the background, this review first introduces the concept and database of sequence alignment, pattern matching, and mining. Then, the basic architecture and parallel computing principle of GPU are briefly described. Next, the design of GPU-based algorithms and optimization strategies in sequence alignment, pattern matching, and mining are listed in detail. By comparing and analyzing the existing research, the summarization of the advantages and challenges of GPU application in bioinformatics are given. Finally, the future research direction is prospected, including the further development of the algorithm combined with machine learning and deep learning.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936353476241230105816
2025-01-28
2025-05-12
Loading full text...

Full text loading...

References

  1. Hsieh Y.H. Chen M.S. Toward green computing: Striking the trade-off between memory usage and energy consumption of sequential pattern mining on GPU. 2018 IEEE First International Conference on Artificial Intelligence and Knowledge Engineering (AIKE) Laguna Hills, CA, USA, 26-28 September 2018, pp. 152-155. 10.1109/AIKE.2018.00033
    [Google Scholar]
  2. Aouar A. Yahiaoui S. Sadeg L. Nouali-Taboudjemat N. Beghdad Bey K. Distributed partial simulation for graph pattern matching. Comput. J. 2024 67 1 110 126 10.1093/comjnl/bxac161
    [Google Scholar]
  3. Park S. Hong J. Song J. Kim H. Kim Y. Lee J. Agatha: Fast and efficient GPU acceleration of guided sequence alignment for long read mapping. Proceedings of the 29th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming Edinburgh, United Kingdom, 2024, pp. 431–444.
    [Google Scholar]
  4. Islam M.A. Ahmed C.F. Alam M.T. Leung C.K.S. Graph-based substructure pattern mining with edge-weight. Appl. Intell. 2024 54 5 3756 3785 10.1007/s10489‑024‑05356‑7
    [Google Scholar]
  5. Ajay S. Praveen V. Varghese K. An FPGA based accelerator of the bidirectional wavefront algorithm for pairwise sequence alignment. 2023 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS) Hyderabad, India, 19-22 November 2023, pp. 40-44. 10.1109/APCCAS60141.2023.00021
    [Google Scholar]
  6. Kaur K. Chakraborty S. Kumar Gupta M. Accelerating Smith-Waterman algorithm for faster sequence alignment using graphical processing unit. J. Phys. Conf. Ser. 2022 2161 1 012028 10.1088/1742‑6596/2161/1/012028
    [Google Scholar]
  7. Peng W. Liu H. Dai W. Yu N. Wang J. Predicting cancer drug response using parallel heterogeneous graph convolutional networks with neighborhood interactions. Bioinformatics 2022 38 19 4546 4553 10.1093/bioinformatics/btac574 35997568
    [Google Scholar]
  8. Grailu H. Compression of high-sampling-rate heart sound signals based on downsampling and pattern matching. Multimedia Tools Appl. 2024 83 1 201 226 10.1007/s11042‑023‑15714‑1
    [Google Scholar]
  9. Zhao W. Rao Y. Zhou J. Lu J. DIML: Deep interpretable metric learning via structural matching. IEEE Trans. Pattern Anal. Mach. Intell. 2024 46 4 2518 2532 10.1109/TPAMI.2023.3336668 38019629
    [Google Scholar]
  10. Lee S.E. Yoo H. Chung K. Pose pattern mining using transformer for motion classification. Appl. Intell. 2024 54 5 3841 3858 10.1007/s10489‑024‑05325‑0
    [Google Scholar]
  11. Machorro-Cano I. Ríos-Méndez I.A. Palet-Guzmán J.A. Rodríguez-Mazahua N. Rodríguez-Mazahua L. Alor-Hernández G. Olmedo-Aguirre J.O. Medical opinions analysis about the decrease of autopsies using emerging pattern mining. Data 2023 9 1 2 10.3390/data9010002
    [Google Scholar]
  12. Jazayeri A. Yang C.C. Frequent pattern mining in continuous-time temporal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2024 46 1 305 321 10.1109/TPAMI.2023.3324799 37843999
    [Google Scholar]
  13. Ng A. Odesile A. Si D. GPU accelerated ray tracing for the beta-barrel detection from three-dimensional cryo-EM maps. Bioinformatics Research and Applications. ISBRA 2018. Lecture Notes in Computer Science Springer, Cham, 13 July 2018, pp 217–226. 10.1007/978‑3‑319‑94968‑0_20
    [Google Scholar]
  14. Ahmed N. Lévy J. Ren S. Mushtaq H. Bertels K. Al-Ars Z. GASAL2: A GPU accelerated sequence alignment library for high-throughput NGS data. BMC Bioinformatics 2019 20 1 520 10.1186/s12859‑019‑3086‑9
    [Google Scholar]
  15. Schultz D.W. Xu B. On k-mismatch shortest unique substring queries using GPU. Bioinformatics Research and Applications. ISBRA 2018. Lecture Notes in Computer Science Springer, Cham, 13 July 2018, pp 193–204. 10.1007/978‑3‑319‑94968‑0_18
    [Google Scholar]
  16. Vu L. Alaghband G. A self-adaptive method for frequent pattern mining using a CPU-GPU hybrid model. Proceedings of the Symposium on High Performance Computing Alexandria, Virginia, 12 April 2015, pp. 192–201.
    [Google Scholar]
  17. Gu J. Liu H. Zhou Y. Wang X. Deepprof: Performance analysis for deep learning applications via mining GPU execution patterns. CoRR 2017
    [Google Scholar]
  18. Limón X. Guerra-Hernández A. Cruz-Ramírez N. Acosta-Mesa H.G. Grimaldo F. A windowing strategy for distributed data mining optimized through GPUs. Pattern Recognit. Lett. 2017 93 23 30 10.1016/j.patrec.2016.11.006
    [Google Scholar]
  19. Reddy A.S. Reddy P.K. Mondal A. Priyakumar U.D. Mining subgraph coverage patterns from graph transactions. Int. J. Data Sci. Anal. 2022 13 2 105 121 10.1007/s41060‑021‑00292‑y 34873579
    [Google Scholar]
  20. Petti S. Bhattacharya N. Rao R. Dauparas J. Thomas N. Zhou J. Rush A.M. Koo P. Ovchinnikov S. End-to-end learning of multiple sequence alignments with differentiable Smith–Waterman. Bioinform. 2023 39 1 btac724
    [Google Scholar]
  21. Hu L. Zou L. A GPU-based graph pattern mining system. Proceedings of the 31st ACM International Conference on Information \& Knowledge Management Atlanta, GA, USA, 17 October 2022, pp. 4867 - 4871.
    [Google Scholar]
  22. Naithani A. Jain V. Rajpal T.S. Mistry V. AI based goalkeeper for penalty shot prediction using RNN and pattern matching algorithm. 2024 12th International Symposium on Digital Forensics and Security (ISDFS) San Antonio, TX, USA, 2024, pp. 1-7. 10.1109/ISDFS60797.2024.10527307
    [Google Scholar]
  23. Wang K. Zhang Y. Song Y. Xu J. Zhang S. Tan J. Deep pattern matching for energy consumption prediction of complex structures in ecological additive manufacturing. IEEE Trans. Industr. Inform. 2024 20 3 3510 3520 10.1109/TII.2023.3281649
    [Google Scholar]
  24. Sarkar A. Ray K. Chowdhury D. Sahu K. Kundu S. Ghosh S. Time and space efficient optimal pairwise sequence alignment using GPU. TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON) Kochi, India, 17-20 October 2019, pp. 423-428. 10.1109/TENCON.2019.8929482
    [Google Scholar]
  25. Zhang P. Liu H. Wei Y. Zhai Y. Tian Q. Zou Q. FMAlign2: A novel fast multiple nucleotide sequence alignment method for ultralong datasets. Bioinformatics 2024 40 1 btae014 10.1093/bioinformatics/btae014 38200554
    [Google Scholar]
  26. Singh S. Le N.Q.K. Wang C. VF-Pred: Predicting virulence factor using sequence alignment percentage and ensemble learning models. Comput. Biol. Med. 2024 168 107662 10.1016/j.compbiomed.2023.107662 37979206
    [Google Scholar]
  27. Sanz V. Pousa A. Naiouf M. De Giusti A. Efficient pattern matching on CPU-GPU heterogeneous systems. Algorithms and Architectures for Parallel Processing. Springer 2020 391 403 10.1007/978‑3‑030‑38991‑8_26
    [Google Scholar]
  28. Amir O. Amir A. Fraenkel A. Sarne D. On the practical power of automata in pattern matching. SN Comput. Sci. 2024 5 4 400 10.1007/s42979‑024‑02679‑7
    [Google Scholar]
  29. Li L. Liu P. Bu C. Zhang Z. Wu X. Fuzzy ranking-based preference completion via graph pattern matching and rematching. IEEE Trans. Emerg. Top. Comput. Intell. 2024 8 2 2009 2021 10.1109/TETCI.2024.3359096
    [Google Scholar]
  30. Zheng Y. Han C. Zhang T. Zhang F. Wang J. A dependence graph pattern mining method for processor performance analysis. Perform. Eval. 2024 164 102409 10.1016/j.peva.2024.102409
    [Google Scholar]
  31. Gengsen H. Taspm: Targeted sequential pattern mining. ACM Trans. Knowl. Discov. Data 2024 18 5 114 118
    [Google Scholar]
  32. Cruz-Gamero F.L. C’aceres J.C.G. Optimization of BLAST seed indexing in the alignment of DNA sequences with GPU using CUDA. 018 XLIV Latin American Computer Conference (CLEI) Sao Paulo, Brazil, 01-05 October 2018, pp. 527-532. 10.1109/CLEI.2018.00069
    [Google Scholar]
  33. de Oliveira G.B. Pedrini H. Dias Z. Fusion of BLAST and ensemble of classifiers for protein secondary structure prediction. 2020 33rd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI) Porto de Galinhas, Brazil, 2020, pp. 308-315. 10.1109/SIBGRAPI51738.2020.00049
    [Google Scholar]
  34. Rioux N. Huang X. Oliveira B.C.d.S. Zdancewic S. A bowtie for a beast: Overloading, eta expansion, and extensible data types in f▷◁. Proc. ACM Program. Lang. 2023 7 POPL 515 543
    [Google Scholar]
  35. Langarita R. Armejach A. Ibáñez P. Alastruey-Benedé J. Moretó M. Porting and optimizing BWA-MEM2 using the fujitsu A64FX processor. IEEE/ACM Trans. Comput. Biol. Bioinformatics 2023 20 5 3139 3153 10.1109/TCBB.2023.3264514 37018085
    [Google Scholar]
  36. Vieira I.H.P. Botelho E.B. de Souza Gomes T.J. Kist R. Caceres R.A. Zanchi F.B. Visual dynamics: A WEB application for molecular dynamics simulation using GROMACS. BMC Bioinformatics 2023 24 1 107 10.1186/s12859‑023‑05234‑y 36949402
    [Google Scholar]
  37. Jiang H. Ganesan N. CUDAMPF: A multi-tiered parallel framework for accelerating protein sequence search in HMMER on CUDA-enabled GPU. BMC Bioinformatics 2016 17 1 106 10.1186/s12859‑016‑0946‑4 26920848
    [Google Scholar]
  38. Yamada T. 7bgzf: Replacing samtools bgzip deflation for archiving and real-time compression. Comput. Biol. Chem. 2020 85 107207 10.1016/j.compbiolchem.2020.107207 32092548
    [Google Scholar]
  39. Hügel J. Sax U. Murphy S.N. Estiri H. tSPM+; A high-performance algorithm for mining transitive sequential patterns from clinical data. CoRR 2023
    [Google Scholar]
  40. Hryhoruk C.C. Leung C.K. Li J. Narine B.A. Wedel F. Multi-level frequent pattern mining on pipeline incident data. Advanced Information Networking and Applications. Springer Cham 2024 10.1007/978‑3‑031‑57853‑3_32
    [Google Scholar]
  41. Moritz P. Nishihara R. Wang S. Tumanov A. Liaw R. Liang E. Elibol M. Yang Z. Paul W. Jordan M.I. Stoica I. Ray: A distributed framework for emerging AI applications. OSDI'18: Proceedings of the 13th USENIX conference on Operating Systems Design and Implementation Carlsbad, CA, USA, 08 October 2018, pp. 561 - 577.
    [Google Scholar]
  42. Petrelli M. Parallel computing and scaling with dask. Machine Learning for Earth Sciences. Springer Cham 2023 161 175 10.1007/978‑3‑031‑35114‑3_10
    [Google Scholar]
  43. Kong X. Shen C. Tang J. Cuk-band: A CUDA-based multiple genomic sequence alignment on GPU. Advanced Intelligent Computing in Bioinformatics. ICIC 2024. Lecture Notes in Computer Science Springer Singapore 2024 84 95
    [Google Scholar]
  44. Tanenbaum A.S. van Steen M. Distributed systems - Principles and paradigms. 2nd ed Pearson Education 2007
    [Google Scholar]
  45. Wang Y. Chen Z. Han Y. Accelerating the Smith-Waterman algorithm by GPU for high-throughput sequence alignment. MICML '23: Proceedings of the 2023 International Conference on Mathematics, Intelligent Computing and Machine Learning Chengdu, China, 29 January 2024, pp. 77 - 84. 10.1145/3638264.3638280
    [Google Scholar]
  46. Liu Y. Yuan H. Zhang Q. Wang Z. Xiong S. Wen N. Zhang Y. Multiple sequence alignment based on deep reinforcement learning with self-attention and positional encoding. Bioinformatics 2023 39 11 btad636 10.1093/bioinformatics/btad636 37856335
    [Google Scholar]
  47. Hung C.L. Hsu T.H. Wang H.H. Lin C.Y. A GPU-based bit-parallel multiple pattern matching algorithm. 2018 IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS) HPCC/SmartCity/DSS Exeter, UK, 28-30 June 2018, pp. 1219-1222. 10.1109/HPCC/SmartCity/DSS.2018.00205
    [Google Scholar]
  48. Yuan Y. Ye H. Vedula S. Kaza W. Talati N. Everest: GPU-accelerated system for mining temporal motifs. Proc. VLDB Endow 2023 17 2 162 174 10.14778/3626292.3626299
    [Google Scholar]
  49. Hu L. Zou L. Özsu M.T. GAMMA: A graph pattern mining framework for large graphs on GPU. 2023 IEEE 39th International Conference on Data Engineering (ICDE) Anaheim, CA, USA, 2023, pp. 273-286. 10.1109/ICDE55515.2023.00028
    [Google Scholar]
  50. Ferraz S. Dias V. Teixeira C.H. Teodoro G. Meira W. Efficient strategies for graph pattern mining algorithms on GPUs. 2022 IEEE 34th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD) 2022, pp. 110-119. 10.1109/SBAC‑PAD55451.2022.00022
    [Google Scholar]
  51. Soroushnia S. Daneshtalab M. Pahikkala T. Plosila J. Parallel implementation of fuzzified pattern matching algorithm on GPU. 2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing Turku, Finland, 2015, pp. 341-344. 10.1109/PDP.2015.75
    [Google Scholar]
  52. Bani Baker Q. Al-Hussien R.A. Al-Ayyoub M. Accelerating multiple sequence alignments using parallel computing. Computation 2024 12 2 32 10.3390/computation12020032
    [Google Scholar]
  53. Zhang T. Cai X. Chen L. Yang Z. Gao Y. Cao B. Fan J. Towards efficient simulation-based constrained temporal graph pattern matching. World Wide Web 2024 27 3 22 10.1007/s11280‑024‑01259‑2
    [Google Scholar]
  54. Terra-Neves M. Amaral J. Lemos A. Quintino R. Resende P. Alegria A. Sat-based algorithms for regular graph pattern matching. Proc. Conf. AAAI Artif. Intell. 2024 38 8 8136 8145 10.1609/aaai.v38i8.28653
    [Google Scholar]
  55. Sharma A. Mehta D. Wu B. Understanding high-performance subgraph pattern matching: A systems perspective. Proceedings of the 7th Joint Workshop on Graph Data Management Experiences \& Systems (GRADES) and Network Data Analytics (NDA) Santiago, AA, Chile, 09 June 2024, pp. 1-12. 10.1145/3661304.3661897
    [Google Scholar]
  56. Zafarani-Moattar E. Kangavari M.R. Rahmani A.M. A comprehensive study on frequent pattern mining and clustering categories for topic detection in Persian text stream. CoRR 2024
    [Google Scholar]
  57. Kadıoğlu S. Wang X. Hosseininasab A. van Hoeve W.J. Seq2Pat: Sequence‐to‐pattern generation to bridge pattern mining with machine learning. AI Mag. 2023 44 1 54 66 10.1002/aaai.12081
    [Google Scholar]
  58. Zhou J. Yu K.M. Wu B.C. Parallel frequent patterns mining algorithm on GPU. SMC 2010 435 440 10.1109/ICSMC.2010.5641778
    [Google Scholar]
  59. Guo F. Li S.C. Wang L. P-binder: A system for the protein-protein binding sites identification. Bioinformatics Research and Applications. ISBRA 2012. Lecture Notes in Computer Science Springer Berlin, Heidelberg. 2012 127 138 10.1007/978‑3‑642‑30191‑9_13
    [Google Scholar]
  60. Li Y. Wang Y. Wang C. Ma A. Ma Q. Liu B. A weighted two-stage sequence alignment framework to identify motifs from ChIP-exo data. Patterns 2024 5 3 100927 10.1016/j.patter.2024.100927 38487805
    [Google Scholar]
  61. Zeng G. Zhu J. Zhang Y. Chen G. Yuan Z. Wei S. Liu L. A high-performance genomic accelerator for accurate sequence-to-graph alignment using dynamic programming algorithm. IEEE Trans. Parallel Distrib. Syst. 2024 35 2 237 249 10.1109/TPDS.2023.3325137
    [Google Scholar]
  62. Wei Y. Zou Q. Tang F. Yu L. WMSA: A novel method for multiple sequence alignment of DNA sequences. Bioinformatics 2022 38 22 5019 5025 10.1093/bioinformatics/btac658 36179076
    [Google Scholar]
  63. Yeung W. Zhou Z. Li S. Kannan N. Alignment-free estimation of sequence conservation for identifying functional sites using protein sequence embeddings. Brief. Bioinform. 2023 24 1 bbac599 10.1093/bib/bbac599 36631405
    [Google Scholar]
  64. Reddy B. Fields R. Performance analysis of multiple sequence alignment tools. ACM 2024 167 174 10.1145/3603287.3651216
    [Google Scholar]
  65. Walia S. Ye C. Bera A. Lodhavia D. Turakhia Y. TALCO: Tiling genome sequence alignment using convergence of traceback pointers. 2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA) Edinburgh, United Kingdom, 2024, pp. 91-107. 10.1109/HPCA57654.2024.00044
    [Google Scholar]
  66. Shen C. Liu B. Williams K.P. Warnow T. EMMA: A new method for computing multiple sequence alignments given a constraint subset alignment. Algorithms Mol. Biol. 2023 18 1 21 10.1186/s13015‑023‑00247‑x 38062452
    [Google Scholar]
  67. Aguado-Puig Q. Doblas M. Matzoros C. Espinosa A. Moure J.C. Marco-Sola S. Moreto M. WFA-GPU: Gap-affine pairwise read-alignment using GPUs. Bioinformatics 2023 39 12 btad701 10.1093/bioinformatics/btad701 37975878
    [Google Scholar]
  68. Diab S. Nassereldine A. Alser M. Gómez Luna J. Mutlu O. El Hajj I. A framework for high-throughput sequence alignment using real processing-in-memory systems. Bioinformatics 2023 39 5 btad155 10.1093/bioinformatics/btad155 36971586
    [Google Scholar]
  69. Varsamis G.D. Karafyllidis I.G. Gilkes K.M. Arranz U. Martin-Cuevas R. Calleja G. Dimitrakis P. Kolovos P. Sandaltzopoulos R. Jessen H.C. Wong J. Quantum gate algorithm for reference-guided DNA sequence alignment. Comput. Biol. Chem. 2023 107 107959 10.1016/j.compbiolchem.2023.107959 37717360
    [Google Scholar]
  70. Khodji H. Collet P. Thompson J.D. Jeannin-Girardon A. De-MISTED: Image-based classification of erroneous multiple sequence alignments using convolutional neural networks. Appl. Intell. 2023 53 15 18806 18820 10.1007/s10489‑022‑04390‑7
    [Google Scholar]
  71. Chen X. Wang C. Tang S. Yu C. Zou Q. CMSA: A heterogeneous CPU/GPU computing system for multiple similar RNA/DNA sequence alignment. BMC Bioinformatics 2017 18 1 315 10.1186/s12859‑017‑1725‑6 28646874
    [Google Scholar]
  72. Carroll T.C. Ojiaku J.T. Wong P.W.H. Semiglobal sequence alignment with gaps using GPU. IEEE/ACM Trans. Comput. Biol. Bioinformatics 2020 17 6 2086 2097 10.1109/TCBB.2019.2914105 31056513
    [Google Scholar]
  73. Aljouie A. Zhong L. Roshan U. High scoring segment selection for pairwise whole genome sequence alignment with the maximum scoring subsequence and GPUs. Int. J. Comput. Biol. Drug Des. 2020 13 1 71 81 10.1504/IJCBDD.2020.105097
    [Google Scholar]
  74. Awan M.G. Deslippe J. Buluc A. Selvitopi O. Hofmeyr S. Oliker L. Yelick K. ADEPT: A domain independent sequence alignment strategy for gpu architectures. BMC Bioinformatics 2020 21 1 406 10.1186/s12859‑020‑03720‑1 32933482
    [Google Scholar]
  75. Park S. Kim H. Ahmad T. Ahmed N. Al-Ars Z. Hofstee H.P. Kim Y. Lee J. Maximizing data locality and workload balance for fast sequence alignment on GPUs. 2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS) Lyon, France, 30 May 2022 - 03 June 2022, pp. 728-738.
    [Google Scholar]
  76. Müller A. Schmidt B. Membarth R. Leißa R. Hack S. AnySeq/GPU: A novel approach for faster sequence alignment on GPUs. Proceedings of the 36th ACM International Conference on Supercomputing Virtual Event, 28 June 2022, pp. 1–11.
    [Google Scholar]
  77. Perez-Wohlfeil E. Trelles O. Guil N. Irregular alignment of arbitrarily long DNA sequences on GPU. J. Supercomput. 2023 79 8 8699 8728 10.1007/s11227‑022‑05007‑z
    [Google Scholar]
  78. Peverelli F. Di Tucci L. Santambrogio M.D. Ding N. Hofmeyr S. Bulu¸c A. Oliker L. Yelick K. GPU accelerated partial order multiple sequence alignment for long reads self-correction. 2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) New Orleans, LA, USA, 18-22 May 2020, pp. 1-9. 10.1109/IPDPSW50202.2020.00039
    [Google Scholar]
  79. Zhang H. Li J. Speeding up pattern matching in streaming time-series via block vector and multilevel lower bound. Neural Comput. Appl. 2024 36 7 3389 3403 10.1007/s00521‑023‑09291‑5
    [Google Scholar]
  80. Zhukova B. New space-time trade-offs for pattern matching with compressed indexes. Finland University of Helsinki 2024
    [Google Scholar]
  81. Arora T. Balasubramanian V. Stranieri A. Menon V.G. Modified early warning score (MEWS) visualization and pattern matching imputation in remote patient monitoring. IEEE Access 2024 12 74784 74794 10.1109/ACCESS.2024.3396274
    [Google Scholar]
  82. Steiner T.A. Differentially private approximate pattern matching. arXiv preprint 2023
    [Google Scholar]
  83. Kociumaka T. Nogler J. Wellnitz P. On the communication complexity of approximate pattern matching. arXiv preprint 2024 10.1145/3618260.3649604
    [Google Scholar]
  84. Ibrahim O.A.S. Hamed B.A. El-Hafeez T.A. A new fast technique for pattern matching in biological sequences. J. Supercomput. 2023 79 1 367 388 10.1007/s11227‑022‑04673‑3
    [Google Scholar]
  85. Hung C.L. Lin C.Y. Wu P.C. An efficient GPU-based multiple pattern matching algorithm for packet filtering. J. Signal Process. Syst. Signal Image Video Technol. 2017 86 2-3 347 358 10.1007/s11265‑016‑1139‑0
    [Google Scholar]
  86. Mahmud P. Rahman A. Hasan Talukder K. An improved hashing approach for biological sequence to solve exact pattern matching problems. Appl. Comput. Intell. Soft Comput. 2023 2023 1 1 16 10.1155/2023/3278505
    [Google Scholar]
  87. Hamed B.A. Ibrahim O.A.S. Abd El-Hafeez T. Optimizing classification efficiency with machine learning techniques for pattern matching. J. Big Data 2023 10 1 124 10.1186/s40537‑023‑00804‑6
    [Google Scholar]
  88. Bayne E. Ferguson R.I. Sampson A.T. OpenForensics: A digital forensics GPU pattern matching approach for the 21st century. Digit. Invest. 2018 24 S29 S37 10.1016/j.diin.2018.01.005
    [Google Scholar]
  89. Sanz V. Pousa A. Naiouf M. De Giusti A. Accelerating pattern matching with CPU-GPU collaborative computing. Algorithms and Architectures for Parallel Processing. ICA3PP 2018. Lecture Notes in Computer Science Springer Cham 2018 10.1007/978‑3‑030‑05051‑1_22
    [Google Scholar]
  90. Sinnapolu G. Alawneh S. GPU accelerated implementation for sunday string pattern matching algorithm. IEEE International Conference on Electro/Information Technology (EIT) Rochester, MI, USA, 2018, pp. 0007-0011. 10.1109/EIT.2018.8500261
    [Google Scholar]
  91. Stylianopoulos C. Kindström S. Almgren M. Landsiedel O. Papatriantafilou M. Co-evaluation of pattern matching algorithms on IoT devices with embedded GPUs. ACSAC '19: Proceedings of the 35th Annual Computer Security Applications Conference San Juan, Puerto Rico, USA, 09 December 2019, pp. 17 - 27. 10.1145/3359789.3359811
    [Google Scholar]
  92. Nunes L.S.N. Bordim J.L. Ito Y. Nakano K. A rabin-karp implementation for handling multiple pattern-matching on the GPU. IEICE Trans. Inf. Syst. 2020 E103 D 2412 2420 10.1587/transinf.2020PAP0002
    [Google Scholar]
  93. Sadiq M.U. Yousaf M.M. Space-efficient computation of parallel approximate string matching. J. Supercomput. 2023 79 8 9093 9126 10.1007/s11227‑022‑05038‑6
    [Google Scholar]
  94. Wei Y. Jiang P. STMatch: Accelerating graph pattern matching on GPU with stack-based loop optimizations. SC22: International Conference for High Performance Computing, Networking, Storage and Analysis, Dallas, TX, USA, 13-18 November 2022, pp. 1-13.
    [Google Scholar]
  95. Dayarathne N. Ragel R. Accelerating rabin karp on a graphics processing unit (GPU) using compute unified device architecture (CUDA). 7th International Conference on Information and Automation for Sustainability Colombo, Sri Lanka, 22-24 December 2014, pp. 1-6.
    [Google Scholar]
  96. Nagda B.M. White R.T. promSEMBLE: Hard pattern mining and ensemble learning for detecting DNA promoter sequences. IEEE/ACM Trans Comput Biol Bioinform. 2024 Jan-Feb 21 1 208 214 10.1109/TCBB.2023.3339597
    [Google Scholar]
  97. Zhu B. Jiang Y. Gu M. Deng Y. A GPU acceleration framework for motif and discord based pattern mining. IEEE Trans. Parallel Distrib. Syst. 2021 32 8 1987 2004 10.1109/TPDS.2021.3055765
    [Google Scholar]
  98. Wu Y.C. Yeh M.Y. Kuo T.W. Fast frequent pattern mining without candidate generations on GPU by low latency memory allocation. 2019 IEEE International Conference on Big Data (Big Data) Los Angeles, CA, USA, 2019, pp. 1407-1416. 10.1109/BigData47090.2019.9006541
    [Google Scholar]
  99. Gan W. Lin J.C.W. Fournier-Viger P. Chao H.C. Yu P.S. A survey of parallel sequential pattern mining. ACM Trans. Knowl. Discov. Data 2019 13 3 1 34 10.1145/3314107
    [Google Scholar]
  100. Chen X. Dathathri R. Gill G. Pingali K. Pangolin: An efficient and flexible graph pattern mining system on CPU and GPU. arXiv 2019
    [Google Scholar]
  101. Jamshidi K. Mahadasa R. Vora K. Peregrine: A pattern-aware graph mining system. Proceedings of the Fifteenth European Conference on Computer Systems Heraklion, Greece, 17 April 2020, pp. 1 - 16.
    [Google Scholar]
  102. Chen X. Efficient and scalable graph pattern mining on GPUs. This paper is included in the Proceedings of the 16th USENIX Symposium on Operating Systems Design and Implementation. July 11–13, 2022 Carlsbad, CA, USA.
    [Google Scholar]
  103. Fang W. Jiang H. Lu H. Sun J. Wu X. Lin J.C.W. GPU-based efficient parallel heuristic algorithm for high-utility itemset mining in large transaction datasets. IEEE Trans. Knowl. Data Eng. 2023 ••• 1 16 10.1109/TKDE.2023.3290371
    [Google Scholar]
  104. Fu C. Wang Z. Zhai Y. A CPU-GPU data transfer optimization approach based on code migration and merging. 2017 16th International Symposium on Distributed Computing and Applications to Business, Engineering and Science (DCABES) Anyang, China, 13-16 October 2017, pp. 23-26. 10.1109/DCABES.2017.13
    [Google Scholar]
  105. Muthukrishnan H. Nellans D.W. Lustig D. Fessler J.A. Wenisch T.F. Efficient multi-GPU shared memory via automatic optimization of fine-grained transfers. 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA) Valencia, Spain, 14-18 June 2021, pp. 139-152. 10.1109/ISCA52012.2021.00020
    [Google Scholar]
  106. Lubrano F. Vercellino C. Vitali G. Viviani P. Scionti A. Terzo O. Advanced resource allocation in the context of heterogeneous workflows management. WiDE '24: Proceedings of the 2nd Workshop on Workflows in Distributed Environments Athens, Greece, 22 April 2024, pp. 14 - 20. 10.1145/3642978.3652835
    [Google Scholar]
  107. Hung C.L. Tang C.Y. Bioinformatics tools with deep learning based on GPU. 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) Kansas City, MO, USA, 2017, pp. 1906-1908. 10.1109/BIBM.2017.8217950
    [Google Scholar]
  108. Paeng B. Park I.B. Park J. Deep reinforcement learning for minimizing tardiness in parallel machine scheduling with sequence dependent family setups. IEEE Access 2021 9 101390 101401 10.1109/ACCESS.2021.3097254
    [Google Scholar]
  109. Shi C. Sun Y. Sui Y. Chen Y. Wang H. Zhang Y. oclCUB: An OpenCL parallel computing library for deep learning operators. CCF Trans. High Perform. Comput. 2024 6 3 319 329 10.1007/s42514‑024‑00181‑3
    [Google Scholar]
  110. Jin Z. Vetter J.S. Understanding performance portability of bioinformatics applications in SYCL on an NVIDIA GPU. 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) Las Vegas, NV, USA, 06-08 December 2022, pp. 2190-2195. 10.1109/BIBM55620.2022.9995222
    [Google Scholar]
  111. Chon K.W. Kim C. GMiner++: Boosting GPU-based frequent itemset mining by reducing redundant computations. Expert Syst. Appl. 2024 250 250 123928 10.1016/j.eswa.2024.123928
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936353476241230105816
Loading
/content/journals/cbio/10.2174/0115748936353476241230105816
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test