Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Introduction

Celiac Disease (CD) is a common autoimmune disorder caused by the activation of CD4+ T cells that specifically target gluten and CD8+ T cells, further causing cell death inside the epithelial layer despite no available established biomarkers of CD diagnosis. This work aimed to compare scRNA-seq and transcriptome data to find novel gene biomarkers linked to T cells that might potentially be utilized for the diagnosis and assessment of CD.

Methods

Collecting the scRNA and RNAseq datasets from the NCBI database, the Seurat package of R studio, and the statistical analysis tool GREIN server were employed to identify Differentially Expressed Genes (DEGs). Then, DAVID, FunRich, STRING, and NetworkAnalyst tools were utilized to explore significant pathways, key hub proteins, and gene regulators.

Results

After integrating genes and conducting a comparative analysis, a total of 115 genes were identified as DEGs. Exosomes, MHC class II receptor activity, immune response, interferon gamma signaling, and bystander B cell activation within the immune system pathways were the significant Gene Ontology (GO) and metabolic pathways identified. Besides, eleven topological algorithms discovered two hub proteins, namely HLA-DRA and HLA-DRB1, from the PPI network. Through the analysis of the regulatory network, we have identified four crucial Transcription Factors (TFs), including YY1, FOXC1, GATA2, and USF2, and seven significant miRNAs (hsa-mir-129-2-3p, and hsa-mir-155-5p, .) in transcriptionally and post-transcriptionally regulated. Validation of hub proteins and transcription factors using Receiver Operating Characteristic (ROC) analysis indicates the acceptable value of the Area Under the Curve (AUC).

Conclusion

This study utilized single-cell RNA sequencing and transcriptomics data analysis to define unique protein biomarkers associated with T cells throughout the progression of CD. Furthermore, wet lab studies will be needed to validate the potential hub proteins, TFs, and miRNAs as clinical biomarkers.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936353313250123071744
2025-02-10
2026-02-16
Loading full text...

Full text loading...

References

  1. ColeM.W. RossB.J. CollinsL.K. ImonugoO. ShermanW.F. The impact of celiac disease on complication rates after total joint arthroplasty: A matched cohort study.Arthroplast. Today202217205210.e310.1016/j.artd.2022.08.001 36254209
    [Google Scholar]
  2. CichewiczA.B. MearnsE.S. TaylorA. Diagnosis and treatment patterns in celiac disease.Dig. Dis. Sci.20196482095210610.1007/s10620‑019‑05528‑3 30820708
    [Google Scholar]
  3. FasanoA. CatassiC. Celiac disease.N. Engl. J. Med.2012367252419242610.1056/NEJMcp1113994 23252527
    [Google Scholar]
  4. GreenP.H.R. CellierC. Celiac Disease2007www.nejm.org10.1056/NEJMra071600
    [Google Scholar]
  5. RoyG. BañaresF.F. CorzoM. AguilillaG.S. HozG.C. NúñezC. Intestinal and blood lymphograms as new diagnostic tests for celiac disease.Front. Immunol.202313108195510.3389/fimmu.2022.1081955
    [Google Scholar]
  6. RodrigoL. Celiac disease.World J. Gastroenterol.200612416585659310.3748/wjg.v12.i41.6585 17075969
    [Google Scholar]
  7. CaioG. VoltaU. SaponeA. Celiac disease: A comprehensive current review.BMC Med.201917114210.1186/s12916‑019‑1380‑z
    [Google Scholar]
  8. ValituttiF. TrovatoC.M. MontuoriM. CucchiaraS. Pediatric celiac disease: Follow-up in the spotlight.Adv. Nutr.20178235636110.3945/an.116.013292
    [Google Scholar]
  9. TjonJ.M.L. BergenvJ KoningF. Celiac disease: How complicated can it get?Immunogenetics2010621064165110.1007/s00251‑010‑0465‑9 20661732
    [Google Scholar]
  10. HuangJ. KhademiM. FuggerL. Inflammation-related plasma and CSF biomarkers for multiple sclerosis.Proc. Natl. Acad. Sci. USA202011723129521296010.1073/pnas.1912839117 32457139
    [Google Scholar]
  11. ArnethB. KrausJ. Laboratory biomarkers of multiple sclerosis (MS).Clin. Biochem.2022991810.1016/j.clinbiochem.2021.10.004 34673037
    [Google Scholar]
  12. MacoskoE.Z. BasuA. SatijaR. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets.Cell201516151202121410.1016/j.cell.2015.05.002 26000488
    [Google Scholar]
  13. ChenX. TeichmannS.A. MeyerK.B. From tissues to cell types and back: Single-cell gene expression analysis of tissue architecture.Annu. Rev. Biomed. Data Sci.201811295110.1146/annurev‑biodatasci‑080917‑013452
    [Google Scholar]
  14. OlsenT.K. BaryawnoN. Introduction to single‐cell rna sequencing.Curr. Protoc. Mol. Biol.20181221e5710.1002/cpmb.57 29851283
    [Google Scholar]
  15. DingJ. AdiconisX. SimmonsS.K. Systematic comparative analysis of single cell RNA-sequencing methods.Nat. Biotechnol.202038673774610.1101/632216
    [Google Scholar]
  16. ButlerA. HoffmanP. SmibertP. PapalexiE. SatijaR. Integrating single-cell transcriptomic data across different conditions, technologies, and species.Nat. Biotechnol.201836541142010.1038/nbt.4096 29608179
    [Google Scholar]
  17. MahiN.A. NajafabadiM.F. PilarczykM. KourilM. MedvedovicM. GREIN: An interactive web platform for re-analyzing geo rna-seq data.Sci. Rep.201991758010.1038/s41598‑019‑43935‑8 31110304
    [Google Scholar]
  18. MayassiT. LadellK. GudjonsonH. Chronic inflammation permanently reshapes tissue-resident immunity in celiac disease.Cell20191765967981.e1910.1016/j.cell.2018.12.039 30739797
    [Google Scholar]
  19. RahmanM.H. PengS. HuX. A network-based bioinformatics approach to identify molecular biomarkers for type 2 diabetes that are linked to the progression of neurological diseases.Int. J. Environ. Res. Public Health2020173103510.3390/ijerph17031035 32041280
    [Google Scholar]
  20. LytalN. RanD. AnL. Normalization Methods on Single-Cell RNA-seq Data: An Empirical Survey.Front. Genet.202011February4110.3389/fgene.2020.00041 32117453
    [Google Scholar]
  21. ColeM.B. RissoD. WagnerA. Performance assessment and selection of normalization procedures for single-cell rna-seq.Cell Syst.201984315328.e810.1016/j.cels.2019.03.010 31022373
    [Google Scholar]
  22. TsuyuzakiK. SatoH. SatoK. NikaidoI. Benchmarking principal component analysis for large-scale single-cell RNA-sequencing.Genome Biol.2020211910.1186/s13059‑019‑1900‑3 31955711
    [Google Scholar]
  23. SultanaA. AlamM.S. LiuX. Single-cell RNA-seq analysis to identify potential biomarkers for diagnosis, and prognosis of non-small cell lung cancer by using comprehensive bioinformatics approaches.Transl. Oncol.202327January10157110.1016/j.tranon.2022.101571 36401966
    [Google Scholar]
  24. LevineJH SimondsEF BendallSC Data-driven phenotypic dissection of aml reveals progenitor-like cells that correlate with prognosis.cell201516211849710.1016/j.cell.2015.05.04726095251
    [Google Scholar]
  25. HuangDW ShermanBT TanQ. DAVID bioinformatics resources: Expanded annotation database and novel algorithms to better extract biology from large gene lists.Nucleic Acids Res200735Web Server issueW1697510.1093/nar/gkm415
    [Google Scholar]
  26. PathanM. KeerthikumarS. AngC.S. FunRich: An open access standalone functional enrichment and interaction network analysis tool.Proteomics201515152597260110.1002/pmic.201400515 25921073
    [Google Scholar]
  27. TangD. ChenM. HuangX. SRplot: A free online platform for data visualization and graphing.PLoS One20231811e029423610.1371/journal.pone.0294236 37943830
    [Google Scholar]
  28. SzklarczykD. GableA.L. LyonD. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets.Nucleic Acids Res.201947D1D607D61310.1093/nar/gky1131 30476243
    [Google Scholar]
  29. PaulShannon. Cytoscape: A Software Environment for Integrated Models.Genome Res.19711322426
    [Google Scholar]
  30. ChinC.H. ChenS.H. WuH.H. HoC.W. KoM.T. LinC.Y. cytoHubba: Identifying hub objects and sub-networks from complex interactome.BMC Syst. Biol.20148S4)(Suppl. 4S1110.1186/1752‑0509‑8‑S4‑S11 25521941
    [Google Scholar]
  31. XiaJ. GillE.E. HancockR.E.W. NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data.Nat. Protoc.201510682384410.1038/nprot.2015.052 25950236
    [Google Scholar]
  32. FornesO. MondragonC.J.A. KhanA. JASPAR 2020: Update of the open-access database of transcription factor binding profiles.Nucleic Acids Res.201948D1gkz100110.1093/nar/gkz1001 31701148
    [Google Scholar]
  33. SethupathyP. CordaB. HatzigeorgiouA.G. TarBase: A comprehensive database of experimentally supported animal microRNA targets.RNA200612219219710.1261/rna.2239606 16373484
    [Google Scholar]
  34. WalterW. CaboS.F. RicoteM. GOplot: An R package for visually combining expression data with functional analysis.Bioinformatics201531172912291410.1093/bioinformatics/btv300 25964631
    [Google Scholar]
  35. RajalahtiT. ArnebergR. KroksveenA.C. BerleM. MyhrK.M. KvalheimO.M. Discriminating variable test and selectivity ratio plot: Quantitative tools for interpretation and variable (biomarker) selection in complex spectral or chromatographic profiles.Anal. Chem.20098172581259010.1021/ac802514y 19228047
    [Google Scholar]
  36. MandrekarS.J. SargentD.J. Clinical trial designs for predictive biomarker validation: Theoretical considerations and practical challenges.J. Clin. Oncol.200927244027403410.1200/JCO.2009.22.3701 19597023
    [Google Scholar]
  37. GeistlingerL. CsabaG. SantarelliM. Toward a gold standard for benchmarking gene set enrichment analysis.Brief. Bioinform.202122154555610.1093/bib/bbz158 32026945
    [Google Scholar]
  38. KuleshovM.V. JonesM.R. RouillardA.D. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update.Nucleic Acids Res.201644W1W90-710.1093/nar/gkw377 27141961
    [Google Scholar]
  39. RobinX. TurckN. HainardA. pROC: An open-source package for R and S+ to analyze and compare ROC curves.BMC Bioinformatics2011121277
    [Google Scholar]
  40. MedranoL.M. DemaB. LariosL.A. HLA and celiac disease susceptibility: New genetic factors bring open questions about the HLA influence and gene-dosage effects.PLoS One2012710e4840310.1371/journal.pone.0048403 23119005
    [Google Scholar]
  41. AydemirÖ. BaileyJ.A. AgardhD. Polymorphisms in intron 1 of hla-dra differentially associate with type 1 diabetes and celiac disease and implicate involvement of complement system genes C4A and C4BmedRxiv 2006-23.2023;
    [Google Scholar]
  42. SalleseM. LopetusoL.R. EfthymakisK. NeriM. Beyond the hla genes in gluten-related disorders.Front. Nutr.20207November57584410.3389/fnut.2020.575844 33262997
    [Google Scholar]
  43. MegiorniF. PizzutiA. HLA-DQA1 and HLA-DQB1 in Celiac disease predisposition: Practical implications of the HLA molecular typing.J. Biomed. Sci.20121918810.1186/1423‑0127‑19‑88 23050549
    [Google Scholar]
  44. RoderoR.S. RodrigoL. MoreraF.J.L. MHC class I chain-related gene B promoter polymorphisms and celiac disease.Hum. Immunol.200667320821410.1016/j.humimm.2006.02.011 16698444
    [Google Scholar]
  45. PoddigheD. CapittiniC. The role of HLA in the association between iga deficiency and celiac disease.Dis. Markers202120211810.1155/2021/8632861 35186163
    [Google Scholar]
  46. SchweigerS.D. MendezA. JamnikK.S. Genetic risk for co‐occurrence of type 1 diabetes and celiac disease is modified by HLA‐C and killer immunoglobulin‐like receptors.Tissue Antigens201484547147810.1111/tan.12450 25329633
    [Google Scholar]
  47. JabriB. de SerreN.P. CellierC. Selective expansion of intraepithelial lymphocytes expressing the hla-e-specific natural killer receptor cd94 in celiac disease.Gastroenterology2000118586787910.1016/S0016‑5085(00)70173‑9
    [Google Scholar]
  48. PopatS. HearleN. HogbergL. Variation in the CTLA4/CD28 gene region confers an increased risk of coeliac disease.Ann. Hum. Genet.200266212513710.1046/j.1469‑1809.2002.00102.x 12174216
    [Google Scholar]
  49. AnjumN. BakerP.N. RobinsonN.J. AplinJ.D. Maternal celiac disease autoantibodies bind directly to syncytiotrophoblast and inhibit placental tissue transglutaminase activity.Reprod. Biol. Endocrinol.2009711610.1186/1477‑7827‑7‑16 19228395
    [Google Scholar]
  50. HudecM. JuříčkováI. RiegerováK. OvsepianS.V. ČernáM. O’LearyV.B. Enhanced extracellular transfer of hla-dq activates cd3+ lymphocytes towards compromised treg induction in celiac disease.Int. J. Mol. Sci.20222311610210.3390/ijms23116102 35682780
    [Google Scholar]
  51. YaoY. ZiaA. NeumannR.S. T cell receptor repertoire as a potential diagnostic marker for celiac disease.Clin. Immunol.202122210862110.1016/j.clim.2020.108621 33197618
    [Google Scholar]
  52. MeresseB. MalamutG. BensussanC.N. Celiac disease: An immunological jigsaw.Immunity201236690791910.1016/j.immuni.2012.06.006 22749351
    [Google Scholar]
  53. QiaoS.W. IversenR. RákiM. SollidL.M. The adaptive immune response in celiac disease.Semin. Immunopathol.201234452354010.1007/s00281‑012‑0314‑z 22535446
    [Google Scholar]
  54. CamarcaM.E. MozzilloE. NugnesR. Celiac disease in type 1 diabetes mellitus.Ital. J. Pediatr.20123811010.1186/1824‑7288‑38‑10 22449104
    [Google Scholar]
  55. LondeiM. CiacciC. RicciardelliI. VaccaL. QuaratinoS. MaiuriL. Gliadin as a stimulator of innate responses in celiac disease.Mol. Immunol.200542891391810.1016/j.molimm.2004.12.005 15829281
    [Google Scholar]
  56. KumarV. AchuryG.J. KanduriK. Systematic annotation of celiac disease loci refines pathological pathways and suggests a genetic explanation for increased interferon-gamma levels.Hum. Mol. Genet.201524239740910.1093/hmg/ddu453 25190711
    [Google Scholar]
  57. CombaA. ÇaltepeG. YanıkK. GörU. YüceÖ. KalaycıA.G. Assessment of endothelial dysfunction with adhesion molecules in patients with celiac disease.J. Pediatr. Gastroenterol. Nutr.201663224725210.1097/MPG.0000000000001138 26835908
    [Google Scholar]
  58. SevimogluT. ArgaK.Y. The role of protein interaction networks in systems biomedicine.Comput. Struct. Biotechnol. J.20141118222710.1016/j.csbj.2014.08.008
    [Google Scholar]
  59. ZimmerK.P. PorembaC. WeberP. CiclitiraP.J. HarmsE. Translocation of gliadin into HLA-DR antigen containing lysosomes in coeliac disease enterocytes.Gut199536570370910.1136/gut.36.5.703 7797120
    [Google Scholar]
  60. de la ConchaE.G. ArqueroF.M. VigilP. Celiac disease and TNF promoter polymorphisms.Hum. Immunol.200061551351710.1016/S0198‑8859(99)00187‑1 10773355
    [Google Scholar]
  61. MohammedM.A. OmarN.M. SheblA.M. MansourA.H. ElmasryE. OthmanG. Celiac disease prevalence and its HLA-genotypic profile in Egyptian patients with type 1 diabetes mellitus.Trends Med. Res.201492819710.3923/tmr.2014.81.97
    [Google Scholar]
  62. LevineA WolfsonE BujanoverY ReifenR. Gastroenterology.Israel: The Wolfson Medical CenterMinistry of Health 2000; p. (May): 2014.
    [Google Scholar]
  63. BresnickE.H. JungM.M. KatsumuraK.R. Human GATA2 mutations and hematologic disease: How many paths to pathogenesis?Blood Adv.20204184584459210.1182/bloodadvances.2020002953 32960960
    [Google Scholar]
  64. ShibataN. OhnumaT. HigashiS. Genetic association between usf 1 and usf 2 gene polymorphisms and japanese Alzheimer’s disease.J Gerontol Biol Sci Med Sci2006617660662
    [Google Scholar]
  65. GamboaB.K.A. QuezadaA.M. BravoP.F. MicroRNAs: An epigenetic tool to study celiac disease.Rev. Esp. Enferm. Dig.20141065325333
    [Google Scholar]
  66. FelliC. BaldassarreA. MasottiA. Intestinal and circulating micrornas in celiac disease.Int. J. Mol. Sci.2017189190710.3390/ijms18091907
    [Google Scholar]
  67. KurkiA KemppainenE LaurikkaP KaukinenK LindforsK The use of peripheral blood mononuclear cells in celiac disease diagnosis and treatment.202110.1080/17474124.2021.1850262
    [Google Scholar]
  68. BianchiN. DonedaL. ElliL. Circulating micrornas suggest networks associated with biological functions in aggressive refractory type 2 celiac disease.Biomedicines2022106140810.3390/biomedicines10061408 35740429
    [Google Scholar]
  69. BascuñánK.A. BravoP.F. GaudiosoG. A miRNA-based blood and mucosal approach for detecting and monitoring celiac disease.Dig. Dis. Sci.20206571982199110.1007/s10620‑019‑05966‑z 31781909
    [Google Scholar]
  70. GiuffridaP. SabatinoD.A. MicroRNAs in celiac disease diagnosis: A mir curiosity or game-changer?Dig. Dis. Sci.20206571877187910.1007/s10620‑020‑06081‑0
    [Google Scholar]
  71. TanI.L. Coutinho de AlmeidaR. ModdermanR. Circulating miRNAs as potential biomarkers for celiac disease development.Front. Immunol.20211273476310.3389/fimmu.2021.734763 34950132
    [Google Scholar]
  72. HartM. DienerC. LunkesL. miR-34a-5p as molecular hub of pathomechanisms in Huntington’s disease.Mol. Med.20232914310.1186/s10020‑023‑00640‑7 37013480
    [Google Scholar]
  73. HeL. ChenZ. WangJ. FengH. Expression relationship and significance of NEAT1 and miR-27a-3p in serum and cerebrospinal fluid of patients with Alzheimer’s disease.BMC Neurol.202222120310.1186/s12883‑022‑02728‑9 35659599
    [Google Scholar]
  74. ChenD. WuX. XiaM. Upregulated exosomic miR-23b-3p plays regulatory roles in the progression of pancreatic cancer.Oncol. Rep.20173842182218810.3892/or.2017.5919 28849236
    [Google Scholar]
  75. AlamroH. BajicV. MacvaninM.T. Type 2 diabetes mellitus and its comorbidity, Alzheimer’s disease: Identifying critical microRNA using machine learning.Front. Endocrinol.202313108465610.3389/fendo.2022.1084656 36743910
    [Google Scholar]
  76. KachareP.H. SangleS.B. PuriD.V. KhubraniM.M. ShourbajiA.I. STEADYNet: Spatiotemporal EEG analysis for dementia detection using convolutional neural network.Cogn. Neurodynamics20241853195320810.1007/s11571‑024‑10153‑6 39555263
    [Google Scholar]
  77. PuriDV KacharePH SangleSB LEADNet: Detection of Alzheimer’s disease using spatiotemporal eeg analysis and lowcomplexity cnn.IEEE Access202412July1138889710.1109/ACCESS.2024.3435768
    [Google Scholar]
  78. ShourbajiA.I. KachareP.H. AbualigahL. A deep batch normalized convolution approach for improving COVID-19 detection from chest X-ray images.Pathogens20221211710.3390/pathogens12010017 36678365
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936353313250123071744
Loading
/content/journals/cbio/10.2174/0115748936353313250123071744
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test