Skip to content
2000
image of An Overview of Spatial Transcriptomics Methodologies in Traversing the Biological System

Abstract

Transcriptomics covers the in-depth analysis of RNA molecules in cells or tissues and plays an essential role in understanding cellular functions and disease mechanisms. Advances in spatial transcriptomics (ST) in recent times have revolutionized the field by combining gene expression data with spatial information, enabling the analysis of RNA molecules within their tissue context. The evolution of spatial transcriptomics, particularly the integration of artificial intelligence (AI) in data analysis, and its diverse applications have been found to be superior methods in developmental research. Spatial transcriptomics technologies, along with single-cell RNA sequencing (scRNA-seq), offer unprecedented possibilities to unravel intricate cellular interactions within tissues. It emphasizes the importance of accurate cell localization for in-depth discoveries and developments high-throughput spatial transcriptome profiling. The integration of artificial intelligence in spatial transcriptomics analysis is a key focus, showcasing its role in detecting spatially variable genes, clustering cell populations, communication analysis, and enhancing data interpretation. The evolution of AI methods tailored for spatial transcriptomics is highlighted, addressing the unique challenges posed by spatially resolved transcriptomic data. Applications of spatial transcriptomics integrated with other omics data, such as genomics, proteomics, and metabolomics, provide a detailed view of molecular processes within tissues and emerge in diverse applications. Integrating spatial transcriptomics with AI represents a transformative approach to understanding tissue architecture and cellular interactions. This innovative synergy not only enhances our understanding of gene expression patterns but also offers a holistic view of molecular processes within tissues, with profound implications for disease mechanisms and therapeutic development.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936352261241224053340
2025-01-30
2025-06-18
Loading full text...

Full text loading...

References

  1. Lowe R. Shirley N. Bleackley M. Dolan S. Shafee T. Transcriptomics technologies. PLOS Comput. Biol. 2017 13 5 e1005457 10.1371/journal.pcbi.1005457 28545146
    [Google Scholar]
  2. Rahman H. Jagadeeshselvam N. Valarmathi R. Sachin B. Sasikala R. Senthil N. Sudhakar D. Robin S. Muthurajan R. Transcriptome analysis of salinity responsiveness in contrasting genotypes of finger millet (Eleusine coracana L.) through RNA-sequencing. Plant Mol. Biol. 2014 85 4-5 485 503 10.1007/s11103‑014‑0199‑4 24838653
    [Google Scholar]
  3. Jayakodi M. Lee S.C. Park H.S. Jang W. Lee Y.S. Choi B.S. Nah G.J. Kim D.S. Natesan S. Sun C. Yang T.J. Transcriptome profiling and comparative analysis of Panax ginseng adventitious roots. J. Ginseng Res. 2014 38 4 278 288 10.1016/j.jgr.2014.05.008 25379008
    [Google Scholar]
  4. Dong Z. Chen Y. Transcriptomics: Advances and approaches. Sci. China Life Sci. 2013 56 10 960 967 10.1007/s11427‑013‑4557‑2 24091688
    [Google Scholar]
  5. Karthikeyan A. Renganathan V.G. Karthikeyan M. Senthil N. Pearl millet transcriptomics in response to abiotic stresses: Current status and future prospects 1st Ed. Chapter 7 Nova Science Publishers 2023 167 182
    [Google Scholar]
  6. Selvapandian U. Nallusamy S. Singh S.K. Mannu J. Shanmugam V. Ravikumar C. Subbarayalu M. Transcriptome profiling and in silico docking analysis of phosphine resistance in rice weevil, Sitophilus oryzae (Coleoptera: Curculionidae). J. Insect Sci. 2023 23 6 29 10.1093/jisesa/iead110 38159032
    [Google Scholar]
  7. Kamalanathan V. Sevugapperumal N. Nallusamy S. Ashraf S. Kailasam K. Afzal M. Metagenomic approach deciphers the role of community composition of mycobiome structured by Bacillus velezensis VB7 and Trichoderma koningiopsis TK in tomato Rhizosphere to suppress root-knot nematode infecting tomato. Microorganisms 2023 11 10 2467 10.3390/microorganisms11102467 37894125
    [Google Scholar]
  8. Vinothini K. Metagenomic profiling of tomato rhizosphere delineates the diverse nature of uncultured microbes as influenced by Bacillus velezensis VB7 and Trichoderma koningiopsis TK towards the suppression of root-knot nematode under field conditions 3 Biotech 2024 14 1 2 10.1007/s13205‑023‑03851‑1
    [Google Scholar]
  9. Saranya N. Srinivasan K. Kumar P.S.K. FBCNN-TSA: An optimal deep learning model for banana ripening stages classification. J. Intell. Fuzzy Syst. 2023 44 3 5257 5273 10.3233/JIFS‑221841
    [Google Scholar]
  10. Giacomello S. Salmén F. Terebieniec B.K. Vickovic S. Navarro J.F. Alexeyenko A. Reimegård J. McKee L.S. Mannapperuma C. Bulone V. Ståhl P.L. Sundström J.F. Street N.R. Lundeberg J. Spatially resolved transcriptome profiling in model plant species. Nat. Plants 2017 3 6 17061 10.1038/nplants.2017.61 28481330
    [Google Scholar]
  11. Song Q. Su J. DSTG: Deconvoluting spatial transcriptomics data through graph-based artificial intelligence. Brief. Bioinform. 2021 22 5 bbaa414 10.1093/bib/bbaa414 33480403
    [Google Scholar]
  12. Yin R. Xia K. Xu X. Spatial transcriptomics drives a new era in plant research. Plant J. 2023 116 6 1571 1581 10.1111/tpj.16437 37651723
    [Google Scholar]
  13. Cang Z. Zhao Y. Almet A.A. Stabell A. Ramos R. Plikus M.V. Atwood S.X. Nie Q. Screening cell–cell communication in spatial transcriptomics via collective optimal transport. Nat. Methods 2023 20 2 218 228 10.1038/s41592‑022‑01728‑4 36690742
    [Google Scholar]
  14. Griffin R.C. Stechemesser A. Finch J. Lucas E. Ott S. Schäfer P. Single-cell transcriptomics: A high-resolution avenue for plant functional genomics. Trends Plant Sci. 2020 25 2 186 197 10.1016/j.tplants.2019.10.008 31780334
    [Google Scholar]
  15. Liu T. Fang Z.-Y. Zhang Z. Yu Y. Li M. Yin M.-Z. A comprehensive overview of graph neural network-based approaches to clustering for spatial transcriptomics T. Comput. Struct. Biotechnol. J. 2024 23 106 128 10.1016/j.csbj.2023.11.055
    [Google Scholar]
  16. Anderson A.C. Yanai I. Yates L.R. Wang L. Swarbrick A. Sorger P. Santagata S. Fridman W.H. Gao Q. Jerby L. Izar B. Shang L. Zhou X. Spatial transcriptomics. Cancer Cell 2022 40 9 895 900 10.1016/j.ccell.2022.08.021 36099884
    [Google Scholar]
  17. Dries R. Chen J. del Rossi N. Khan M.M. Sistig A. Yuan G.C. Advances in spatial transcriptomic data analysis. Genome Res. 2021 31 10 1706 1718 10.1101/gr.275224.121 34599004
    [Google Scholar]
  18. Williams C.G. Lee H.J. Asatsuma T. Tormo V.R. Haque A. An introduction to spatial transcriptomics for biomedical research. Genome Med. 2022 14 1 68 10.1186/s13073‑022‑01075‑1 35761361
    [Google Scholar]
  19. Longo S.K. Guo M.G. Ji A.L. Khavari P.A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nat. Rev. Genet. 2021 22 10 627 644 10.1038/s41576‑021‑00370‑8 34145435
    [Google Scholar]
  20. Moses L. Pachter L. Museum of spatial transcriptomics. Nat. Methods 2022 19 5 534 546 10.1038/s41592‑022‑01409‑2 35273392
    [Google Scholar]
  21. Lovatt D. Ruble B.K. Lee J. Dueck H. Kim T.K. Fisher S. Francis C. Spaethling J.M. Wolf J.A. Grady M.S. Ulyanova A.V. Yeldell S.B. Griepenburg J.C. Buckley P.T. Kim J. Sul J.Y. Dmochowski I.J. Eberwine J. Transcriptome in vivo analysis (TIVA) of spatially defined single cells in live tissue. Nat. Methods 2014 11 2 190 196 10.1038/nmeth.2804 24412976
    [Google Scholar]
  22. Pavithran S. Murugan M. Mannu J. Sathyaseelan C. Balasubramani V. Harish S. Natesan S. Salivary gland transcriptomics of the cotton aphid Aphis gossypii and comparative analysis with other sap‐sucking insects. Arch. Insect Biochem. Physiol. 2024 116 2 e22123 10.1002/arch.22123 38860775
    [Google Scholar]
  23. Vickovic S. Eraslan G. Salmén F. Klughammer J. Stenbeck L. Schapiro D. Äijö T. Bonneau R. Bergenstråhle L. Navarro J.F. Gould J. Griffin G.K. Borg Å. Ronaghi M. Frisén J. Lundeberg J. Regev A. Ståhl P.L. High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods 2019 16 10 987 990 10.1038/s41592‑019‑0548‑y 31501547
    [Google Scholar]
  24. Canozo G.F.J. Zuo Z. Martin J.F. Samee M.A.H. Cell-type modeling in spatial transcriptomics data elucidates spatially variable colocalization and communication between cell-types in mouse brain. Cell Syst. 2022 13 1 58 70.e5 10.1016/j.cels.2021.09.004 34626538
    [Google Scholar]
  25. Ståhl P.L. Salmén F. Vickovic S. Lundmark A. Navarro J.F. Magnusson J. Giacomello S. Asp M. Westholm J.O. Huss M. Mollbrink A. Linnarsson S. Codeluppi S. Borg Å. Pontén F. Costea P.I. Sahlén P. Mulder J. Bergmann O. Lundeberg J. Frisén J. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 2016 353 6294 78 82 10.1126/science.aaf2403 27365449
    [Google Scholar]
  26. Geiss G.K. Bumgarner R.E. Birditt B. Dahl T. Dowidar N. Dunaway D.L. Fell H.P. Ferree S. George R.D. Grogan T. James J.J. Maysuria M. Mitton J.D. Oliveri P. Osborn J.L. Peng T. Ratcliffe A.L. Webster P.J. Davidson E.H. Hood L. Dimitrov K. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat. Biotechnol. 2008 26 3 317 325 10.1038/nbt1385 18278033
    [Google Scholar]
  27. Jin L. Lloyd R.V. In situ hybridization: Methods and applications. J. Clin. Lab. Anal. 1997 11 1 2 9 10.1002/(SICI)1098‑2825(1997)11:1<2::AID‑JCLA2>3.0.CO;2‑F 9021518
    [Google Scholar]
  28. Tang F. Barbacioru C. Wang Y. Nordman E. Lee C. Xu N. Wang X. Bodeau J. Tuch B.B. Siddiqui A. Lao K. Surani M.A. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 2009 6 5 377 382 10.1038/nmeth.1315 19349980
    [Google Scholar]
  29. Chen T.Y. You L. Hardillo J.A.U. Chien M.P. Spatial transcriptomic technologies. Cells 2023 12 16 2042 10.3390/cells12162042 37626852
    [Google Scholar]
  30. Svensson V. Tormo V.R. Teichmann S.A. Exponential scaling of single-cell RNA-seq in the past decade. Nat. Protoc. 2018 13 4 599 604 10.1038/nprot.2017.149 29494575
    [Google Scholar]
  31. Chen W.T. Lu A. Craessaerts K. Pavie B. Frigerio S.C. Corthout N. Qian X. Laláková J. Kühnemund M. Voytyuk I. Wolfs L. Mancuso R. Salta E. Balusu S. Snellinx A. Munck S. Jurek A. Navarro F.J. Saido T.C. Huitinga I. Lundeberg J. Fiers M. De Strooper B. Spatial transcriptomics and in situ sequencing to study Alzheimer’s disease. Cell 2020 182 4 976 991.e19 10.1016/j.cell.2020.06.038 32702314
    [Google Scholar]
  32. Rodriques S.G. Stickels R.R. Goeva A. Martin C.A. Murray E. Vanderburg C.R. Welch J. Chen L.M. Chen F. Macosko E.Z. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 2019 363 6434 1463 1467 10.1126/science.aaw1219 30923225
    [Google Scholar]
  33. Giesen C. Wang H.A.O. Schapiro D. Zivanovic N. Jacobs A. Hattendorf B. Schüffler P.J. Grolimund D. Buhmann J.M. Brandt S. Varga Z. Wild P.J. Günther D. Bodenmiller B. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 2014 11 4 417 422 10.1038/nmeth.2869 24584193
    [Google Scholar]
  34. Danaher P. Single cell spatial transcriptomic profiling of childhood-onset lupus nephritis reveals complex interactions between kidney stroma and infiltrating immune cells. bioRxiv 2023 11.09 566503 10.1101/2023.11.09.566503
    [Google Scholar]
  35. Edsgärd D. Johnsson P. Sandberg R. Identification of spatial expression trends in single-cell gene expression data. Nat. Methods 2018 15 5 339 342 10.1038/nmeth.4634 29553578
    [Google Scholar]
  36. Hou X. Yang Y. Li P. Zeng Z. Hu W. Zhe R. Liu X. Tang D. Ou M. Dai Y. Integrating spatial transcriptomics and single-cell RNA-seq reveals the gene expression profling of the human embryonic liver. Front. Cell Dev. Biol. 2021 9 652408 10.3389/fcell.2021.652408 34095116
    [Google Scholar]
  37. Rao A. Barkley D. França G.S. Yanai I. Exploring tissue architecture using spatial transcriptomics. Nature 2021 596 7871 211 220 10.1038/s41586‑021‑03634‑9 34381231
    [Google Scholar]
  38. Baccin C. Al-Sabah J. Velten L. Helbling P.M. Grünschläger F. Malmierca H.P. Arrieta N.C. Steinmetz L.M. Trumpp A. Haas S. Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nat. Cell Biol. 2020 22 1 38 48 10.1038/s41556‑019‑0439‑6 31871321
    [Google Scholar]
  39. Maniatis S. Äijö T. Vickovic S. Braine C. Kang K. Mollbrink A. Fagegaltier D. Andrusivová Ž. Saarenpää S. Castro S.G. Cuevas M. Watters A. Lundeberg J. Bonneau R. Phatnani H. Spatiotemporal dynamics of molecular pathology in amyotrophic lateral sclerosis. Science 2019 364 6435 89 93 10.1126/science.aav9776 30948552
    [Google Scholar]
  40. Xu X. Wen Z. Zhao N. Xu X. Wang F. Gao J. Jiang Y. Liu X. MicroRNA-1906, a novel regulator of toll-like receptor 4, ameliorates ischemic injury after experimental stroke in mice. J. Neurosci. 2017 37 43 10498 10515 10.1523/JNEUROSCI.1139‑17.2017 28924010
    [Google Scholar]
  41. Eberwine J. Yeh H. Miyashiro K. Cao Y. Nair S. Finnell R. Zettel M. Coleman P. Analysis of gene expression in single live neurons. Proc. Natl. Acad. Sci. 1992 89 7 3010 3014 10.1073/pnas.89.7.3010 1557406
    [Google Scholar]
  42. Ahmed R. Zaman T. Chowdhury F. Mraiche F. Tariq M. Ahmad I.S. Hasan A. Single-cell RNA sequencing with spatial transcriptomics of cancer tissues. Int. J. Mol. Sci. 2022 23 6 3042 10.3390/ijms23063042 35328458
    [Google Scholar]
  43. Fan Z. Luo Y. Lu H. Wang T. Feng Y. Zhao W. Kim P. Zhou X. SPASCER: Spatial transcriptomics annotation at single-cell resolution. Nucleic Acids Res. 2023 51 D1 D1138 D1149 10.1093/nar/gkac889 36243975
    [Google Scholar]
  44. Hwang B. Lee J.H. Bang D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp. Mol. Med. 2018 50 8 1 14 10.1038/s12276‑018‑0071‑8 30089861
    [Google Scholar]
  45. Dainiak M.B. Kumar A. Galaev I.Y. Mattiasson B. “Methods in cell separations,” cell separation: Fundamentals. Analytical and Preparative Methods 2007 1 18
    [Google Scholar]
  46. Miltenyi S. Müller W. Weichel W. Radbruch A. High gradient magnetic cell separation with MACS. Cytometry 1990 11 2 231 238 10.1002/cyto.990110203 1690625
    [Google Scholar]
  47. Buck E.M.R. Bonner R.F. Smith P.D. Chuaqui R.F. Zhuang Z. Goldstein S.R. Weiss R.A. Liotta L.A. Laser capture microdissection. Science 1996 274 5289 998 1001 10.1126/science.274.5289.998 8875945
    [Google Scholar]
  48. Schulz K.R. Danna E.A. Krutzik P.O. Nolan G.P. Single-cell phospho-protein analysis by flow cytometry. Curr. Protoc. Immunol. 2012 Chapter 8 1 17.1 20 22314834
    [Google Scholar]
  49. Batley J. Edwards D. SNP applications in plants. Association mapping in plants. Springer 2007 95 102 10.1007/978‑0‑387‑36011‑9_6
    [Google Scholar]
  50. Nijveen H. van Kaauwen M. Esselink D.G. Hoegen B. Vosman B. QualitySNPng: A user-friendly SNP detection and visualization tool. Nucleic Acids Res. 2013 41 W1 W587 W590 10.1093/nar/gkt333 23632165
    [Google Scholar]
  51. Li Y. Stanojevic S. Garmire L.X. Emerging artificial intelligence applications in spatial transcriptomics analysis. Comput. Struct. Biotechnol. J. 2022 20 2895 2908 10.1016/j.csbj.2022.05.056 35765645
    [Google Scholar]
  52. Chelebian E. Avenel C. Kartasalo K. Marklund M. Tanoglidi A. Mirtti T. Colling R. Erickson A. Lamb A. Lundeberg J. Wählby C. Morphological features extracted by AI associated with spatial transcriptomics in prostate cancer. Cancers 2021 13 19 4837 10.3390/cancers13194837 34638322
    [Google Scholar]
  53. Kleino I. Frolovaitė P. Suomi T. Elo L.L. Computational solutions for spatial transcriptomics. Comput. Struct. Biotechnol. J. 2022 20 4870 4884 10.1016/j.csbj.2022.08.043 36147664
    [Google Scholar]
  54. Lee K. Lockhart J.H. Xie M. Chaudhary R. Slebos R.J.C. Flores E.R. Chung C.H. Tan A.C. Deep learning of histopathology images at the single cell level. Front. Artif. Intell. 2021 4 754641 10.3389/frai.2021.754641 34568816
    [Google Scholar]
  55. Hu K.H. Eichorst J.P. McGinnis C.S. Patterson D.M. Chow E.D. Kersten K. Jameson S.C. Gartner Z.J. Rao A.A. Krummel M.F. ZipSeq: Barcoding for real-time mapping of single cell transcriptomes. Nat. Methods 2020 17 8 833 843 10.1038/s41592‑020‑0880‑2 32632238
    [Google Scholar]
  56. Maseda F. Cang Z. Nie Q. DEEPsc: A deep learning-based map connecting single-cell transcriptomics and spatial imaging data. Front. Genet. 2021 12 636743 10.3389/fgene.2021.636743 33833776
    [Google Scholar]
  57. Fang S. Chen B. Zhang Y. Sun H. Liu L. Liu S. Li Y. Xu X. Computational approaches and challenges in spatial transcriptomics. Gen. Prot. Bioinform. 2023 21 1 24 47 10.1016/j.gpb.2022.10.001 36252814
    [Google Scholar]
  58. Liu B. Li Y. Zhang L. Analysis and visualization of spatial transcriptomic data. Front. Genet. 2022 12 785290 10.3389/fgene.2021.785290 35154244
    [Google Scholar]
  59. Lin M.K. Ung C.Y. Zhang C. Weiskittel T.M. Wisniewski P. Zhang Z. Tan S.H. Yeo K.S. Zhu S. Correia C. Li H. SPIN-AI: A deep learning model that identifies spatially predictive genes. Biomolecules 2023 13 6 895 10.3390/biom13060895 37371475
    [Google Scholar]
  60. Zhang K. Feng W. Wang P. Identification of spatially variable genes with graph cuts. Nat. Commun. 2022 13 1 5488 10.1038/s41467‑022‑33182‑3 36123336
    [Google Scholar]
  61. Svensson V. Teichmann S.A. Stegle O. SpatialDE: Identification of spatially variable genes. Nat. Methods 2018 15 5 343 346 10.1038/nmeth.4636 29553579
    [Google Scholar]
  62. Wang T. Spatial transcriptome: Variable genes identification methods. Highlights Sci. Eng. Technol. 2023 74 260 268 10.54097/kt4d4e47
    [Google Scholar]
  63. Zhu J. Sun S. Zhou X. SPARK-X: Non-parametric modeling enables scalable and robust detection of spatial expression patterns for large spatial transcriptomic studies. Genome Biol. 2021 22 1 184 10.1186/s13059‑021‑02404‑0 34154649
    [Google Scholar]
  64. Li B. Zhang W. Guo C. Xu H. Li L. Fang M. Hu Y. Zhang X. Yao X. Tang M. Liu K. Zhao X. Lin J. Cheng L. Chen F. Xue T. Qu K. Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution. Nat. Methods 2022 19 6 662 670 10.1038/s41592‑022‑01480‑9 35577954
    [Google Scholar]
  65. Weber L.M. Saha A. Datta A. Hansen K.D. Hicks S.C. nnSVG for the scalable identification of spatially variable genes using nearest-neighbor Gaussian processes. Nat. Commun. 2023 14 1 4059 10.1038/s41467‑023‑39748‑z 37429865
    [Google Scholar]
  66. Adhikari D.S. Yang J. Wang J. Cui Y. Recent advances in spatially variable gene detection in spatial transcriptomics. Comput. Struct. Biotechnol. J. 2024 23 883 891 10.1016/j.csbj.2024.01.016 38370977
    [Google Scholar]
  67. Yuan X. Ma Y. Gao R. Cui S. Wang Y. Fa B. Ma S. Wei T. Ma S. Yu Z. HEARTSVG: A fast and accurate method for identifying spatially variable genes in large-scale spatial transcriptomics. Nat. Commun. 2024 15 1 5700 10.1038/s41467‑024‑49846‑1 38972896
    [Google Scholar]
  68. Chen C. Kim H.J. Yang P. Evaluating spatially variable gene detection methods for spatial transcriptomics data. Genome Biol. 2024 25 1 18 10.1186/s13059‑023‑03145‑y 38225676
    [Google Scholar]
  69. Hao M. Hua K. Zhang X. SOMDE: A scalable method for identifying spatially variable genes with self-organizing map. Bioinformatics 2021 37 23 4392 4398 10.1093/bioinformatics/btab471 34165490
    [Google Scholar]
  70. Sun S. Zhu J. Zhou X. Statistical analysis of spatial expression patterns for spatially resolved transcriptomic studies. Nat. Methods 2020 17 2 193 200 10.1038/s41592‑019‑0701‑7 31988518
    [Google Scholar]
  71. Wang L. Xu Y. Li J. Powell R.A. Xu Z. Chong K. Transgenic rice plants ectopically expressing AtBAK1 are semi-dwarfed and hypersensitive to 24-epibrassinolide. J. Plant Physiol. 2007 164 5 655 664 10.1016/j.jplph.2006.08.006 17027118
    [Google Scholar]
  72. Moffitt J.R. Hao J. Wang G. Chen K.H. Babcock H.P. Zhuang X. High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization. Proc. Natl. Acad. Sci. 2016 113 39 11046 11051 10.1073/pnas.1612826113 27625426
    [Google Scholar]
  73. Achim K. Pettit J.B. Saraiva L.R. Gavriouchkina D. Larsson T. Arendt D. Marioni J.C. High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin. Nat. Biotechnol. 2015 33 5 503 509 10.1038/nbt.3209 25867922
    [Google Scholar]
  74. Vahid M.R. Brown E.L. Steen C.B. Zhang W. Jeon H.S. Kang M. Gentles A.J. Newman A.M. High-resolution alignment of single-cell and spatial transcriptomes with CytoSPACE. Nat. Biotechnol. 2023 41 11 1543 1548 10.1038/s41587‑023‑01697‑9 36879008
    [Google Scholar]
  75. Wei R. He S. Bai S. Sei E. Hu M. Thompson A. Chen K. Krishnamurthy S. Navin N.E. Spatial charting of single-cell transcriptomes in tissues. Nat. Biotechnol. 2022 40 8 1190 1199 10.1038/s41587‑022‑01233‑1 35314812
    [Google Scholar]
  76. Yin W. Wu X. Chen L. Wan Y. Zhou Y. Accurate and flexible single cell to spatial transcriptome mapping with celloc. Small Sci. 2024 4 10 2400139 10.1002/smsc.202400139
    [Google Scholar]
  77. Tippani M. VistoSeg: Processing utilities for high-resolution Visium/Visium-IF images for spatial transcriptomics data bioRxiv 2021 2021 08 10.1101/2021.08.04.452489
    [Google Scholar]
  78. Stringer C. Wang T. Michaelos M. Pachitariu M. Cellpose: A generalist algorithm for cellular segmentation. Nat. Methods 2021 18 1 100 106 10.1038/s41592‑020‑01018‑x 33318659
    [Google Scholar]
  79. Goldberg A.V. Kennedy R. An efficient cost scaling algorithm for the assignment problem. Math. Program. 1995 71 2 153 177 10.1007/BF01585996
    [Google Scholar]
  80. Ma A. Wang C. Chang Y. Brennan F.H. McDermaid A. Liu B. Zhang C. Popovich P.G. Ma Q. IRIS3: Integrated cell-type-specific regulon inference server from single-cell RNA-Seq. Nucleic Acids Res. 2020 48 W1 W275 W286 10.1093/nar/gkaa394 32421805
    [Google Scholar]
  81. Ma Y. Zhou X. Accurate and efficient integrative reference-informed spatial domain detection for spatial transcriptomics. Nat. Methods 2024 21 7 1231 1244 10.1038/s41592‑024‑02284‑9 38844627
    [Google Scholar]
  82. Long Y. Ang K.S. Sethi R. Liao S. Heng Y. van Olst L. Ye S. Zhong C. Xu H. Zhang D. Kwok I. Husna N. Jian M. Ng L.G. Chen A. Gascoigne N.R.J. Gate D. Fan R. Xu X. Chen J. Deciphering spatial domains from spatial multi-omics with spatialglue. Nat. Methods 2024 21 9 1658 1667 10.1038/s41592‑024‑02316‑4 38907114
    [Google Scholar]
  83. Long Y. Ang K.S. Li M. Chong K.L.K. Sethi R. Zhong C. Xu H. Ong Z. Sachaphibulkij K. Chen A. Zeng L. Fu H. Wu M. Lim L.H.K. Liu L. Chen J. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with GraphST. Nat. Commun. 2023 14 1 1155 10.1038/s41467‑023‑36796‑3 36859400
    [Google Scholar]
  84. Xu H. Fu H. Long Y. Ang K.S. Sethi R. Chong K. Li M. Uddamvathanak R. Lee H.K. Ling J. Chen A. Shao L. Liu L. Chen J. Unsupervised spatially embedded deep representation of spatial transcriptomics. Genome Med. 2024 16 1 12 10.1186/s13073‑024‑01283‑x 38217035
    [Google Scholar]
  85. Ravichandran A. Saranya N. Mannu J. Bharathi N. Natesan S. Venugopal A. Sowdhamini R. Deciphering millet diversity: Proteomic clusters and phylogenetic insights. Int. J. Plant Soil Sci. 2023 35 20 125 133 10.9734/ijpss/2023/v35i203792
    [Google Scholar]
  86. Hao Y. Hao S. Nissen A.E. Mauck W.M. III Zheng S. Butler A. Lee M.J. Wilk A.J. Darby C. Zager M. Hoffman P. Stoeckius M. Papalexi E. Mimitou E.P. Jain J. Srivastava A. Stuart T. Fleming L.M. Yeung B. Rogers A.J. McElrath J.M. Blish C.A. Gottardo R. Smibert P. Satija R. Integrated analysis of multimodal single-cell data. Cell 2021 184 13 3573 3587.e29 10.1016/j.cell.2021.04.048 34062119
    [Google Scholar]
  87. Xu Y. McCord R.P. CoSTA: Unsupervised convolutional neural network learning for spatial transcriptomics analysis. BMC Bioinformatics 2021 22 1 397 10.1186/s12859‑021‑04314‑1 34372758
    [Google Scholar]
  88. Burgess D.J. Spatial transcriptomics coming of age. Nat. Rev. Genet. 2019 20 6 317 317 10.1038/s41576‑019‑0129‑z 30980030
    [Google Scholar]
  89. Li Z. Wang T. Liu P. Huang Y. SpatialDM for rapid identification of spatially co-expressed ligand–receptor and revealing cell–cell communication patterns. Nat. Commun. 2023 14 1 3995 10.1038/s41467‑023‑39608‑w 37414760
    [Google Scholar]
  90. Tang Z. Zhang T. Yang B. Su J. Song Q. spaCI: Deciphering spatial cellular communications through adaptive graph model. Brief. Bioinform. 2023 24 1 bbac563 10.1093/bib/bbac563 36545790
    [Google Scholar]
  91. Teng H. Yuan Y. Joseph B.Z. Clustering spatial transcriptomics data. Bioinformatics 2022 38 4 997 1004 10.1093/bioinformatics/btab704 34623423
    [Google Scholar]
  92. Yuan Y. Joseph B.Z. GCNG: Graph convolutional networks for inferring gene interaction from spatial transcriptomics data. Genome Biol. 2020 21 1 300 10.1186/s13059‑020‑02214‑w 33303016
    [Google Scholar]
  93. Fischer D.S. Schaar A.C. Theis F.J. Learning cell communication from spatial graphs of cells BioRxiv 2021 2021 07 10.1101/2021.07.11.451750
    [Google Scholar]
  94. Zhang L. Chen D. Song D. Liu X. Zhang Y. Xu X. Wang X. Clinical and translational values of spatial transcriptomics. Signal Transduct. Target. Ther. 2022 7 1 111 10.1038/s41392‑022‑00960‑w 35365599
    [Google Scholar]
  95. Zhang M. Molecular, spatial and projection diversity of neurons in primary motor cortex revealed by in situ single-cell transcriptomics BioRxiv 2020 2020 06 10.1101/2020.06.04.105700
    [Google Scholar]
  96. Kleshchevnikov V. Comprehensive mapping of tissue cell architecture via integrated single cell and spatial transcriptomics BioRxiv 2020 2020 11 10.1101/2020.11.15.378125
    [Google Scholar]
  97. Zhou Z. Zhong Y. Zhang Z. Ren X. Spatial transcriptomics deconvolution at single-cell resolution using Redeconve. Nat. Commun. 2023 14 1 7930 10.1038/s41467‑023‑43600‑9 38040768
    [Google Scholar]
  98. Ma Y. Zhou X. Spatially informed cell-type deconvolution for spatial transcriptomics. Nat. Biotechnol. 2022 40 9 1349 1359 10.1038/s41587‑022‑01273‑7 35501392
    [Google Scholar]
  99. Biancalani T. Scalia G. Buffoni L. Avasthi R. Lu Z. Sanger A. Tokcan N. Vanderburg C.R. Segerstolpe Å. Zhang M. Davidi A.I. Vickovic S. Nitzan M. Ma S. Subramanian A. Lipinski M. Buenrostro J. Brown N.B. Fanelli D. Zhuang X. Macosko E.Z. Regev A. Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram. Nat. Methods 2021 18 11 1352 1362 10.1038/s41592‑021‑01264‑7 34711971
    [Google Scholar]
  100. Toth S.T.R. Jens M. Karaiskos N. Rajewsky N. Spacemake: Processing and analysis of large-scale spatial transcriptomics data. Gigascience 2022 11 giac064 10.1093/gigascience/giac064 35852420
    [Google Scholar]
  101. Lopez R. Li B. Shaul K.H. Boyeau P. Kedmi M. Pilzer D. Jelinski A. Yofe I. David E. Wagner A. Ergen C. Addadi Y. Golani O. Ronchese F. Jordan M.I. Amit I. Yosef N. DestVI identifies continuums of cell types in spatial transcriptomics data. Nat. Biotechnol. 2022 40 9 1360 1369 10.1038/s41587‑022‑01272‑8 35449415
    [Google Scholar]
  102. Bergenstråhle L. He B. Bergenstråhle J. Abalo X. Mirzazadeh R. Thrane K. Ji A.L. Andersson A. Larsson L. Stakenborg N. Boeckxstaens G. Khavari P. Zou J. Lundeberg J. Maaskola J. Super-resolved spatial transcriptomics by deep data fusion. Nat. Biotechnol. 2022 40 4 476 479 10.1038/s41587‑021‑01075‑3 34845373
    [Google Scholar]
  103. Ronneberger O. Fischer P. Brox T. U-net: Convolutional networks for biomedical image segmentation presented at the Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Proceedings, part III 18, Springer Germany October 5-9 2015 234 241 10.1007/978‑3‑319‑24574‑4_28
    [Google Scholar]
  104. Monjo T. Koido M. Nagasawa S. Suzuki Y. Kamatani Y. Efficient prediction of a spatial transcriptomics profile better characterizes breast cancer tissue sections without costly experimentation. Sci. Rep. 2022 12 1 4133 10.1038/s41598‑022‑07685‑4 35260632
    [Google Scholar]
  105. Simonyan K. Zisserman A. Very deep convolutional networks for large-scale image recognition arXiv 2014 1409 1556
    [Google Scholar]
  106. Boopathi M.N. Williams M. Ranjani V.R. Paul A.E. Jayakanthan M. Saranya N. Raveendran M. Development of novel SSR markers derived from genomic and transcriptomic data of Moringa oleifera L. var. PKM1 and their applicability. J. Hortic. Sci. Biotechnol. 2022 97 4 487 495 10.1080/14620316.2021.2014991
    [Google Scholar]
  107. Pavithran S. Murugan M. Jayakanthan M. Balasubramani V. Harish S. Senthil N. Proteomic analysis of cowpea aphid iAphis craccivora/i Koch salivary gland using LC-MS/MS analysis. Indian J. Entomol. 2024 Feb 1 6 10.55446/IJE.2024.1897
    [Google Scholar]
  108. Pavithran S. Murugan M. Mannu J. Yogendra K. Balasubramani V. Sanivarapu H. Harish S. Natesan S. Identification of salivary proteins of the cowpea aphid Aphis craccivora by transcriptome and LC-MS/MS analyses. Insect Biochem. Mol. Biol. 2024 165 104060 10.1016/j.ibmb.2023.104060 38123026
    [Google Scholar]
  109. Kadiri M. Sevugapperumal N. Nallusamy S. Ragunathan J. Ganesan M.V. Alfarraj S. Ansari M.J. Sayyed R.Z. Lim H.R. Show P.L. Pan-genome analysis and molecular docking unveil the biocontrol potential of Bacillus velezensis VB7 against Phytophthora infestans. Microbiol. Res. 2023 268 127277 10.1016/j.micres.2022.127277 36577205
    [Google Scholar]
  110. Palaniyappan S. Ganesan K. Manivannan N. Ravichandran V. Senthil N. Genetic distance as a predictor of heterosis in single cross hybrids of fodder maize (Zea mays L.). Electron. J. Plant Breed. 2023 14 2 625 632
    [Google Scholar]
  111. Sathyamurthy D. Comparative chloroplast genome analysis of six millet species along with related Poaceae family members. Nucleus 2024 1 12
    [Google Scholar]
  112. Asp M. Bergenstråhle J. Lundeberg J. Spatially resolved transcriptomes—next generation tools for tissue exploration. BioEssays 2020 42 10 1900221 10.1002/bies.201900221 32363691
    [Google Scholar]
  113. Chowdhury R. Nallusamy S. Shanmugam V. Loganathan A. Muthurajan R. Sivathapandian S.K. Paramasivam J. Duraialagaraja S. Genome-wide understanding of evolutionary and functional relationships of rice Yellow Stripe-Like (YSL) transporter family in comparison with other plant species. Biologia 2022 77 1 39 53 10.1007/s11756‑021‑00924‑5
    [Google Scholar]
  114. Türei D. Valdeolivas A. Gul L. Escat P.N. Klein M. Ivanova O. Ölbei M. Gábor A. Theis F. Módos D. Korcsmáros T. Rodriguez S.J. Integrated intra‐ and intercellular signaling knowledge for multicellular omics analysis. Mol. Syst. Biol. 2021 17 3 e9923 10.15252/msb.20209923 33749993
    [Google Scholar]
  115. Fu Y. Xiao W. Tian L. Guo L. Ma G. Ji C. Huang Y. Wang H. Wu X. Yang T. Wang J. Wang J. Wu Y. Wang W. Spatial transcriptomics uncover sucrose post-phloem transport during maize kernel development. Nat. Commun. 2023 14 1 7191 10.1038/s41467‑023‑43006‑7 37938556
    [Google Scholar]
  116. Jadhav K.P. Karthikeyan A. Mohanapriya B. Ganesan K.N. Paranidharan V. Ramalingam J. Senthil N. Quantitative trait locus mapping reveals the genomic regions associated with yield-related traits in maize (Zea mays L.). Cereal Res. Commun. 2024 52 4 1337 1348 10.1007/s42976‑024‑00510‑w
    [Google Scholar]
  117. Dai D. Ma Z. Song R. Maize kernel development. Mol. Breed. 2021 41 1 2 10.1007/s11032‑020‑01195‑9 37309525
    [Google Scholar]
  118. Indhu S. Ravikesavan R. Senthil N. Chitdeshwari T. Joel A.J. Genetic diversity and decoding the genetics of phytic acid by investigating the inheritance of lpa 2 allele in maize (Zea mays L.). Electron. J. Plant Breed. 2024 15 1 110 119
    [Google Scholar]
  119. Nivethitha T. Ravikesavan R. Vinodhana N.K. Senthil N. Development and genetic evaluation of single cross super-sweet (shrunken 2) sweet corn hybrids (Zea mays var. saccharata L.): A novel choice for commercial market. Electron. J. Plant Breed. 2023 14 2 429 438
    [Google Scholar]
  120. Song X. Guo P. Xia K. Wang M. Liu Y. Chen L. Zhang J. Xu M. Liu N. Yue Z. Xu X. Gu Y. Li G. Liu M. Fang L. Deng X.W. Li B. Spatial transcriptomics reveals light-induced chlorenchyma cells involved in promoting shoot regeneration in tomato callus. Proc. Natl. Acad. Sci. 2023 120 38 e2310163120 10.1073/pnas.2310163120 37703282
    [Google Scholar]
  121. Dai X. Zhuang Z. Zhao P.X. psRNATarget: A plant small RNA target analysis server (2017 release). Nucleic Acids Res. 2018 46 W1 W49 W54 10.1093/nar/gky316 29718424
    [Google Scholar]
  122. He S. Bhatt R. Brown C. Brown E.A. Buhr D.L. Chantranuvatana K. Danaher P. Dunaway D. Garrison R.G. Geiss G. Gregory M.T. Hoang M.L. Khafizov R. Killingbeck E.E. Kim D. Kim T.K. Kim Y. Klock A. Korukonda M. Kutchma A. Lewis Z.R. Liang Y. Nelson J.S. Ong G.T. Perillo E.P. Phan J.C. Everson P.T. Piazza E. Rane T. Reitz Z. Rhodes M. Rosenbloom A. Ross D. Sato H. Wardhani A.W. Wietzikoski W.C.A. Wu L. Beechem J.M. High-plex imaging of RNA and proteins at subcellular resolution in fixed tissue by spatial molecular imaging. Nat. Biotechnol. 2022 40 12 1794 1806 10.1038/s41587‑022‑01483‑z 36203011
    [Google Scholar]
  123. Rosenbloom A. Bonnett S. Conner M. Everson P.T. Lewis Z. Ong G. Liang Y. Brown E. Pan L. Wardhani A. Korukonda M. Brown C. Dunaway D. Zhao E. McGuire D. Woo S. Filanoski B. Meredith R. Chantranuvatana K. Birditt B. Yi H.S. Piazza E. Reeves J. Kang C. Geiss G. Beechem J.M. A complete pipeline for high‐plex spatial proteomic profiling and analysis of neural cell phenotypes on the CosMx™ Spatial Molecular Imager and AtoMx™ Spatial Informatics Platform. Alzheimers Dement. 2023 19 S13 e076665 10.1002/alz.076665
    [Google Scholar]
  124. Everson P.T. Lewis Z. Ong G. Liang Y. Brown E. Pan L. Wardhani A. Korukonda M. Brown C. Dunaway D. Zhao E. McGuire D. Woo S. Rosenbloom A. Filanoski B. Meredith R. Chantranuvatana K. Birditt B. Yi H.S. Piazza E. Reeves J. Lyssand J. Devgan V. Rhodes M. Geiss G. Beechem J. Abstract 4617: A complete pipeline for high-plex spatial proteomic profiling and analysis on the cosmxtm spatial molecular imager and atomtm spatial informatics platform. Cancer Res. 2023 83 S7 4617 4617 10.1158/1538‑7445.AM2023‑4617
    [Google Scholar]
  125. Zimmerman S.M. Spatially resolved whole transcriptome profiling in human and mouse tissue using digital spatial profiling. bioRxiv 2021 462442 10.1101/2021.09.29.462442
    [Google Scholar]
  126. Kishi J.Y. Liu N. West E.R. Sheng K. Jordanides J.J. Serrata M. Cepko C.L. Saka S.K. Yin P. Light-Seq: Light-directed in situ barcoding of biomolecules in fixed cells and tissues for spatially indexed sequencing. Nat. Methods 2022 19 11 1393 1402 10.1038/s41592‑022‑01604‑1 36216958
    [Google Scholar]
  127. Zollinger D.R. Lingle S.E. Sorg K. Beechem J.M. Merritt C.R. GeoMxTM RNA assay: High multiplex, digital, spatial analysis of RNA in FFPE tissue Methods Mol Biol 2020 2148 331 345
    [Google Scholar]
  128. Eng C.H.L. Lawson M. Zhu Q. Dries R. Koulena N. Takei Y. Yun J. Cronin C. Karp C. Yuan G.C. Cai L. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+. Nature 2019 568 7751 235 239 10.1038/s41586‑019‑1049‑y 30911168
    [Google Scholar]
  129. Williams C. Spatial insights into tumor immune evasion illuminated with 1000-plex RNA profiling with CosMx spatial molecular imager. Cancer Res. 2023 83 6765 10 1158
    [Google Scholar]
  130. Chen J. Suo S. Tam P.P.L. Han J.D.J. Peng G. Jing N. Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq. Nat. Protoc. 2017 12 3 566 580 10.1038/nprot.2017.003 28207000
    [Google Scholar]
  131. Medaglia C. Giladi A. Barak S.L. De Giovanni M. Salame T.M. Biram A. David E. Li H. Iannacone M. Shulman Z. Amit I. Spatial reconstruction of immune niches by combining photoactivatable reporters and scRNA-seq. Science 2017 358 6370 1622 1626 10.1126/science.aao4277 29217582
    [Google Scholar]
  132. Choe K. Pak U. Pang Y. Hao W. Yang X. Advances and challenges in spatial transcriptomics for developmental biology. Biomolecules 2023 13 1 156 10.3390/biom13010156 36671541
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936352261241224053340
Loading
/content/journals/cbio/10.2174/0115748936352261241224053340
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test