Skip to content
2000
image of A Deep Learning Method for Identifying G-Protein Coupled Receptors based on a Feature Pyramid Network and Attention Mechanism

Abstract

Background

G-protein coupled receptors (GPCRs) represent a large family of membrane proteins, distinguished by their seven-transmembrane helical structures. These receptors play a pivotal role in numerous physiological processes. Nowadays, many researchers have proposed computational methods to identify GPCRs. In the past, we introduced a powerful method, EMCBOW-GPCR, which was designed for this purpose. However, the feature extraction technique employed is susceptible to out-of-vocabulary errors, indicating the potential for enhanced accuracy in GPCR identification.

Methods

To solve the challenges, we propose a novel approach termed GPCR-AFPN. This method leverages the FastText algorithm to effectively extract features from protein sequences. Additionally, it employs a powerful deep neural network as the predictive model to improve prediction accuracy.

Results

To validate the efficacy of the proposed GPCR-AFPN method, we conducted five-fold cross-validation and independent tests, respectively. The experimental results indicate that GPCR-AFPN outperforms existing methods.

Conclusion

Overall, our proposed method, GPCR-AFPN, can improve the accuracy of GPCR identification. For the convenience of researchers interested in applying our latest advancements, a user-friendly webserver for GPCR-AFPN is available at www.lzzzlab.top/gpcrafpn/, and the corresponding code can be downloaded at https://github.com/454170054/GPCR-AFPN.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936349783250101124112
2025-01-08
2025-05-14
Loading full text...

Full text loading...

References

  1. Qiu W. Lv Z. Xiao X. Shao S. Lin H. EMCBOW-GPCR: A method for identifying G-protein coupled receptors based on word embedding and wordbooks. Comput. Struct. Biotechnol. J. 2021 19 4961 4969 10.1016/j.csbj.2021.08.044 34527200
    [Google Scholar]
  2. Begum K. Mohl J.E. Ayivor F. Perez E.E. Leung M.Y. GPCR-PEnDB: A database of protein sequences and derived features to facilitate prediction and classification of G protein-coupled receptors. Database 2020 2020 baaa087 33216895
    [Google Scholar]
  3. Armstrong J.F. Faccenda E. Harding S.D. Pawson A.J. Southan C. Sharman J.L. Campo B. Cavanagh D.R. Alexander S.P.H. Davenport A.P. Spedding M. Davies J.A. The IUPHAR/BPS Guide to pharmacology in 2020: Extending immunopharmacology content and introducing the IUPHAR/MMV Guide to malaria pharmacology. Nucleic Acids Res. 2020 48 D1 D1006 D1021 31691834
    [Google Scholar]
  4. Hu G.M. Mai T.L. Chen C.M. Visualizing the GPCR network: Classification and evolution. Sci. Rep. 2017 7 1 15495 10.1038/s41598‑017‑15707‑9 29138525
    [Google Scholar]
  5. Lagerström M.C. Schiöth H.B. Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat. Rev. Drug Discov. 2008 7 4 339 357 10.1038/nrd2518 18382464
    [Google Scholar]
  6. Fredriksson R. Lagerström M.C. Lundin L.G. Schiöth H.B. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 2003 63 6 1256 1272 10.1124/mol.63.6.1256 12761335
    [Google Scholar]
  7. Ramesh M. Soliman M. G-protein coupled receptors (GPCRs): A comprehensive computational perspective. Comb. Chem. High Throughput Screen. 2015 18 4 346 364 10.2174/1386207318666150305155545 25747435
    [Google Scholar]
  8. Jacoby E. Bouhelal R. Gerspacher M. Seuwen K. The 7 TM G-protein-coupled receptor target family. ChemMedChem 2006 1 8 760 782 10.1002/cmdc.200600134 16902930
    [Google Scholar]
  9. Foord S.M. Bonner T.I. Neubig R.R. Rosser E.M. Pin J.P. Davenport A.P. Spedding M. Harmar A.J. International Union of Pharmacology. XLVI. G protein-coupled receptor list. Pharmacol. Rev. 2005 57 2 279 288 10.1124/pr.57.2.5 15914470
    [Google Scholar]
  10. Congreve M. de Graaf C. Swain N.A. Tate C.G. Impact of GPCR structures on drug discovery. Cell 2020 181 1 81 91 10.1016/j.cell.2020.03.003 32243800
    [Google Scholar]
  11. Hilger D. Masureel M. Kobilka B.K. Structure and dynamics of GPCR signaling complexes. Nat. Struct. Mol. Biol. 2018 25 1 4 12 10.1038/s41594‑017‑0011‑7 29323277
    [Google Scholar]
  12. Kobilka B.K. Deupi X. Conformational complexity of G-protein-coupled receptors. Trends Pharmacol. Sci. 2007 28 8 397 406 10.1016/j.tips.2007.06.003 17629961
    [Google Scholar]
  13. Zhang R. Xie X. Tools for GPCR drug discovery. Acta Pharmacol. Sin. 2012 33 3 372 384 10.1038/aps.2011.173 22266728
    [Google Scholar]
  14. Hauser A.S. Attwood M.M. Rask-Andersen M. Schiöth H.B. Gloriam D.E. Trends in GPCR drug discovery: New agents, targets and indications. Nat. Rev. Drug Discov. 2017 16 12 829 842 10.1038/nrd.2017.178 29075003
    [Google Scholar]
  15. Peng Z.L. Yang J.Y. Chen X. An improved classification of G-protein-coupled receptors using sequence-derived features. BMC Bioinformatics 2010 11 1 420 10.1186/1471‑2105‑11‑420 20696050
    [Google Scholar]
  16. Bhasin M. Raghava G.P.S. GPCRpred: An SVM-based method for prediction of families and subfamilies of G-protein coupled receptors. Nucleic Acids Res. 2004 32 Web Server Suppl. 2 W383 W389 10.1093/nar/gkh416 15215416
    [Google Scholar]
  17. Vapnik V. The nature of statistical learning theory. New York, NY Springer science & business media 1999
    [Google Scholar]
  18. Xiao X. Wang P. Chou K.C. GPCR‐CA: A cellular automaton image approach for predicting G‐protein–coupled receptor functional classes. J. Comput. Chem. 2009 30 9 1414 1423 10.1002/jcc.21163 19037861
    [Google Scholar]
  19. Zia-ur-Rehman Khan A. Identifying GPCRs and their types with Chou’s pseudo amino acid composition: An approach from multi-scale energy representation and position specific scoring matrix. Protein Pept. Lett. 2012 19 8 890 903 10.2174/092986612801619589 22316312
    [Google Scholar]
  20. Nie G. Li Y. Wang F. Wang S. Hu X. A novel fractal approach for predicting G-protein–coupled receptors and their subfamilies with support vector machines. Biomed. Mater. Eng. 2015 26 s1 Suppl. 1 S1829 S1836 10.3233/BME‑151485 26405954
    [Google Scholar]
  21. Liao Z. Ju Y. Zou Q. Prediction of G protein-coupled receptors with SVM-Prot features and random forest. Scientifica 2016 2016 1 10 10.1155/2016/8309253 27529053
    [Google Scholar]
  22. Cai C.Z. Han L.Y. Ji Z.L. Chen X. Chen Y.Z. SVM-Prot: Web-based support vector machine software for functional classification of a protein from its primary sequence. Nucleic Acids Res. 2003 31 13 3692 3697 10.1093/nar/gkg600 12824396
    [Google Scholar]
  23. Breiman L. Random forests. Mach. Learn. 2001 45 1 5 32 10.1023/A:1010933404324
    [Google Scholar]
  24. Ao C. Gao L. Yu L. Identifying G-protein coupled receptors using mixed-feature extraction methods and machine learning methods. IEEE Access 2020 6 1 1
    [Google Scholar]
  25. Zou Q. Zeng J. Cao L. Ji R. A novel features ranking metric with application to scalable visual and bioinformatics data classification. Neurocomputing 2016 173 346 354 10.1016/j.neucom.2014.12.123
    [Google Scholar]
  26. Bekhouche S. Mohamed Ben Ali Y. Feature selection in GPCR classification using BAT algorithm. Int. J. Comput. Intell. Appl. 2020 19 1 2050006 10.1142/S1469026820500066
    [Google Scholar]
  27. Mikolov T. Chen K. Corrado G. Efficient estimation of word representations in vector space. Computat. Lang. 2013 1 1301 10.48550/arXiv.1301.3781
    [Google Scholar]
  28. Qiu W. Lv Z. Hong Y. Jia J. Xiao X. BOW-GBDT: A GBDT classifier combining with artificial neural network for identifying GPCR–drug interaction based on wordbook learning from sequences. Front. Cell Dev. Biol. 2021 8 623858 10.3389/fcell.2020.623858 33598456
    [Google Scholar]
  29. Chen T. Guestrin C. Xgboost: A scalable tree boosting system. Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining New York, NY, USA, 2016, pp. 785–794. 10.1145/2939672.2939785
    [Google Scholar]
  30. Zhang A. Zack C. Mu L. Dive into deep learning. Cambridge, England Cambridge University Press 2023 583
    [Google Scholar]
  31. LeCun Y. Bengio Y. Hinton G. Deep learning. Nature 2015 521 7553 436 444 10.1038/nature14539 26017442
    [Google Scholar]
  32. Wang T. Zhuo L. Chen Y. Fu X. Zeng X. Zou Q. ECD-CDGI: An efficient energy-constrained diffusion model for cancer driver gene identification. PLOS Comput. Biol. 2024 20 8 e1012400 10.1371/journal.pcbi.1012400 39213450
    [Google Scholar]
  33. Ullah M. Akbar S. Raza A. Zou Q. DeepAVP-TPPred: Identification of antiviral peptides using transformed image-based localized descriptors and binary tree growth algorithm. Bioinformatics 2024 40 5 btae305 10.1093/bioinformatics/btae305 38710482
    [Google Scholar]
  34. Wang Y. Chen Z. Pan Z. Huang S. Liu J. Xia W. Zhang H. Zheng M. Li H. Hou T. Zhu F. RNAincoder: A deep learning-based encoder for RNA and RNA-associated interaction. Nucleic Acids Res. 2023 51 W1 W509 W519 10.1093/nar/gkad404 37166951
    [Google Scholar]
  35. Rafiei F. Zeraati H. Abbasi K. Ghasemi J.B. Parsaeian M. Masoudi-Nejad A. DeepTraSynergy: Drug combinations using multimodal deep learning with transformers. Bioinformatics 2023 39 8 btad438 10.1093/bioinformatics/btad438 37467066
    [Google Scholar]
  36. Salimy S. Lanjanian H. Abbasi K. Salimi M. Najafi A. Tapak L. Masoudi-Nejad A. A deep learning-based framework for predicting survival-associated groups in colon cancer by integrating multi-omics and clinical data. Heliyon 2023 9 7 e17653 10.1016/j.heliyon.2023.e17653 37455955
    [Google Scholar]
  37. Abbasi K. Razzaghi P. Poso A. Ghanbari-Ara S. Masoudi-Nejad A. Deep learning in drug target interaction prediction: Current and future perspectives. Curr. Med. Chem. 2021 28 11 2100 2113 10.2174/1875533XMTA5qNzU62 32895036
    [Google Scholar]
  38. Song W. Xu L. Han C. Tian Z. Zou Q. Drug–target interaction predictions with multi-view similarity network fusion strategy and deep interactive attention mechanism. Bioinformatics 2024 40 6 btae346 10.1093/bioinformatics/btae346 38837345
    [Google Scholar]
  39. Floridi L. Chiriatti M. GPT-3: Its nature, scope, limits, and consequences. Minds Mach. 2020 30 4 681 694 10.1007/s11023‑020‑09548‑1
    [Google Scholar]
  40. Devlin J. Chang M.W. Lee K. BERT: Pre-training of deep bidirectional transformers for language understanding. Computat. Lang. 2018 1 1810 10.48550/arXiv.1810.04805
    [Google Scholar]
  41. Li M. Ling C. Xu Q. Gao J. Classification of G-protein coupled receptors based on a rich generation of convolutional neural network, N-gram transformation and multiple sequence alignments. Amino Acids 2018 50 2 255 266 10.1007/s00726‑017‑2512‑4 29151135
    [Google Scholar]
  42. Ling C. Wei X. Shen Y. Zhang H. Development and validation of multiple machine learning algorithms for the classification of G-protein-coupled receptors using molecular evolution model-based feature extraction strategy. Amino Acids 2021 53 11 1705 1714 10.1007/s00726‑021‑03080‑x 34562175
    [Google Scholar]
  43. Bateman A. Martin M-J. Orchard S. Magrane M. Agivetova R. Ahmad S. Alpi E. Bowler-Barnett E.H. Britto R. Bursteinas B. Bye-A-Jee H. Coetzee R. Cukura A. Da Silva A. Denny P. Dogan T. Ebenezer T.G. Fan J. Castro L.G. Garmiri P. Georghiou G. Gonzales L. Hatton-Ellis E. Hussein A. Ignatchenko A. Insana G. Ishtiaq R. Jokinen P. Joshi V. Jyothi D. Lock A. Lopez R. Luciani A. Luo J. Lussi Y. MacDougall A. Madeira F. Mahmoudy M. Menchi M. Mishra A. Moulang K. Nightingale A. Oliveira C.S. Pundir S. Qi G. Raj S. Rice D. Lopez M.R. Saidi R. Sampson J. Sawford T. Speretta E. Turner E. Tyagi N. Vasudev P. Volynkin V. Warner K. Watkins X. Zaru R. Zellner H. Bridge A. Poux S. Redaschi N. Aimo L. Argoud-Puy G. Auchincloss A. Axelsen K. Bansal P. Baratin D. Blatter M-C. Bolleman J. Boutet E. Breuza L. Casals-Casas C. de Castro E. Echioukh K.C. Coudert E. Cuche B. Doche M. Dornevil D. Estreicher A. Famiglietti M.L. Feuermann M. Gasteiger E. Gehant S. Gerritsen V. Gos A. Gruaz-Gumowski N. Hinz U. Hulo C. Hyka-Nouspikel N. Jungo F. Keller G. Kerhornou A. Lara V. Le Mercier P. Lieberherr D. Lombardot T. Martin X. Masson P. Morgat A. Neto T.B. Paesano S. Pedruzzi I. Pilbout S. Pourcel L. Pozzato M. Pruess M. Rivoire C. Sigrist C. Sonesson K. Stutz A. Sundaram S. Tognolli M. Verbregue L. Wu C.H. Arighi C.N. Arminski L. Chen C. Chen Y. Garavelli J.S. Huang H. Laiho K. McGarvey P. Natale D.A. Ross K. Vinayaka C.R. Wang Q. Wang Y. Yeh L-S. Zhang J. Ruch P. Teodoro D. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021 49 D1 D480 D489 10.1093/nar/gkaa1100 33237286
    [Google Scholar]
  44. Pundir S. Martin M.J. O’Donovan C. UniProt Protein Knowledgebase. Protein Bioinformatics: From Protein Modifications and Networks to Proteomics. Wu C.H. Arighi C.N. Ross K.E. New York, NY Springer New York 2017 41 55 10.1007/978‑1‑4939‑6783‑4_2
    [Google Scholar]
  45. Coudert E. Gehant S. de Castro E. Pozzato M. Baratin D. Neto T. Sigrist C.J.A. Redaschi N. Bridge A. Bridge A.J. Aimo L. Argoud-Puy G. Auchincloss A.H. Axelsen K.B. Bansal P. Baratin D. Neto T.M.B. Blatter M-C. Bolleman J.T. Boutet E. Breuza L. Gil B.C. Casals-Casas C. Echioukh K.C. Coudert E. Cuche B. de Castro E. Estreicher A. Famiglietti M.L. Feuermann M. Gasteiger E. Gaudet P. Gehant S. Gerritsen V. Gos A. Gruaz N. Hulo C. Hyka-Nouspikel N. Jungo F. Kerhornou A. Le Mercier P. Lieberherr D. Masson P. Morgat A. Muthukrishnan V. Paesano S. Pedruzzi I. Pilbout S. Pourcel L. Poux S. Pozzato M. Pruess M. Redaschi N. Rivoire C. Sigrist C.J.A. Sonesson K. Sundaram S. Bateman A. Martin M-J. Orchard S. Magrane M. Ahmad S. Alpi E. Bowler-Barnett E.H. Britto R. A-Jee H.B. Cukura A. Denny P. Dogan T. Ebenezer T.G. Fan J. Garmiri P. da Costa Gonzales L.J. Hatton-Ellis E. Hussein A. Ignatchenko A. Insana G. Ishtiaq R. Joshi V. Jyothi D. Kandasaamy S. Lock A. Luciani A. Lugaric M. Luo J. Lussi Y. MacDougall A. Madeira F. Mahmoudy M. Mishra A. Moulang K. Nightingale A. Pundir S. Qi G. Raj S. Raposo P. Rice D.L. Saidi R. Santos R. Speretta E. Stephenson J. Totoo P. Turner E. Tyagi N. Vasudev P. Warner K. Watkins X. Zaru R. Zellner H. Wu C.H. Arighi C.N. Arminski L. Chen C. Chen Y. Huang H. Laiho K. McGarvey P. Natale D.A. Ross K. Vinayaka C.R. Wang Q. Wang Y. Annotation of biologically relevant ligands in UniProtKB using ChEBI. Bioinformatics 2023 39 1 btac793 10.1093/bioinformatics/btac793 36484697
    [Google Scholar]
  46. Fu L. Niu B. Zhu Z. Wu S. Li W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 2012 28 23 3150 3152 10.1093/bioinformatics/bts565 23060610
    [Google Scholar]
  47. Li W. Godzik A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006 22 13 1658 1659 10.1093/bioinformatics/btl158 16731699
    [Google Scholar]
  48. Döring A. Weese D. Rausch T. Reinert K. SeqAn An efficient, generic C++ library for sequence analysis. BMC Bioinformatics 2008 9 1 11 10.1186/1471‑2105‑9‑11 18184432
    [Google Scholar]
  49. Dubchak I. Prediction of protein folding class using global description of amino acid sequence. Proc. Natl. Acad. Sci. U S A 1995 92 19 8700 8704 10.1073/pnas.92.19.8700 7568000
    [Google Scholar]
  50. Li Z.R. Lin H.H. Han L.Y. Jiang L. Chen X. Chen Y.Z. PROFEAT: A web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence. Nucleic Acids Res. 2006 34 Web Server Suppl. 2 W32 W37 10.1093/nar/gkl305 16845018
    [Google Scholar]
  51. Chou K.C. Prediction of protein subcellular locations by incorporating quasi-sequence-order effect. Biochem. Biophys. Res. Commun. 2000 278 2 477 483 10.1006/bbrc.2000.3815 11097861
    [Google Scholar]
  52. Gao Q.B. Jin Z.C. Ye X.F. Wu C. He J. Prediction of nuclear receptors with optimal pseudo amino acid composition. Anal. Biochem. 2009 387 1 54 59 10.1016/j.ab.2009.01.018 19454254
    [Google Scholar]
  53. Qiu W.R. Wang Q.K. Guan M.Y. Jia J.H. Xiao X. Predicting S-nitrosylation proteins and sites by fusing multiple features. Math. Biosci. Eng. 2021 18 6 9132 9147 34814339
    [Google Scholar]
  54. Chou K.C. Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins 2001 43 3 246 255 10.1002/prot.1035 11288174
    [Google Scholar]
  55. Bojanowski P. Enriching Word Vectors with Subword Information. 2017 5 135 146
    [Google Scholar]
  56. Bojanowski P. Grave E. Joulin A. Mikolov T. Enriching word vectors with subword information. Trans. Assoc. Comput. Linguist. 2017 5 135 146 10.1162/tacl_a_00051
    [Google Scholar]
  57. Li Y.H. Xu J.Y. Tao L. Li X.F. Li S. Zeng X. Chen S.Y. Zhang P. Qin C. Zhang C. Chen Z. Zhu F. Chen Y.Z. SVM-Prot 2016: A web-server for machine learning prediction of protein functional families from sequence irrespective of similarity. PLoS One 2016 11 8 e0155290 10.1371/journal.pone.0155290 27525735
    [Google Scholar]
  58. Hearst M.A. Dumais S.T. Osuna E. Platt J. Scholkopf B. Support vector machines. IEEE Intell. Syst. Their Appl. 1998 13 4 18 28 10.1109/5254.708428
    [Google Scholar]
  59. Pedregosa F. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 2012 12 2825 2830
    [Google Scholar]
  60. Chou K.C. Cai Y.D. A new hybrid approach to predict subcellular localization of proteins by incorporating gene ontology. Biochem. Biophys. Res. Commun. 2003 311 3 743 747 10.1016/j.bbrc.2003.10.062 14623335
    [Google Scholar]
  61. Lin T-Y. Feature pyramid networks for object detection. Proceedings of the IEEE conference on computer vision and pattern recognition Honolulu, HI, USA, 21-26 July 2017, pp. 936-944. 10.1109/CVPR.2017.106
    [Google Scholar]
  62. Lv Z. Wei X. Hu S. Lin G. Qiu W. iSUMO-RsFPN: A predictor for identifying lysine SUMOylation sites based on multi-features and feature pyramid networks. Anal. Biochem. 2024 687 115460 10.1016/j.ab.2024.115460 38191118
    [Google Scholar]
  63. He K. Zhang X. Ren S. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition Las Vegas, NV, USA, 27-30 June 2016, pp. 770-778. 10.1109/CVPR.2016.90
    [Google Scholar]
  64. Vaswani A. Attention is all you need. Proceedings of the 31st International Conference on Neural Information Processing Systems Long Beach, California, USA, 2017, pp. 6000-6010.
    [Google Scholar]
  65. Lin Z. Feng M. Nogueira dos Santos C. A structured self-attentive sentence embedding. Computat. Lang. 2017 1 1703 10.48550/arXiv.1703.03130
    [Google Scholar]
  66. Hendrycks D. Gimpel K. Gaussian error linear units (GELUs). Mach. Lear. 2016 1 1606 10.48550/arXiv.1606.08415
    [Google Scholar]
  67. Abadi M. Agarwal A. Barham P. TensorFlow: Large-scale machine learning on heterogeneous distributed systems. Distrib. Para. Clus. Compu. 2016 1 1603 10.48550/arXiv.1603.04467
    [Google Scholar]
  68. Kingma D.P. Ba J. Adam: A method for stochastic optimization. Machine Learning 2014 1 1412 10.48550/arXiv.1412.6980
    [Google Scholar]
  69. Srivastava N. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014 15 1929 1958
    [Google Scholar]
  70. Wang H. Early stopping for deep image prior. Compu. Visi. Patt. Recog. 2021 4 06074 10.48550/arXiv.2112.06074
    [Google Scholar]
  71. Moradi R. Berangi R. Minaei B. A survey of regularization strategies for deep models. Artif. Intell. Rev. 2020 53 6 3947 3986 10.1007/s10462‑019‑09784‑7
    [Google Scholar]
  72. Jumper J. Evans R. Pritzel A. Green T. Figurnov M. Ronneberger O. Tunyasuvunakool K. Bates R. Žídek A. Potapenko A. Bridgland A. Meyer C. Kohl S.A.A. Ballard A.J. Cowie A. Romera-Paredes B. Nikolov S. Jain R. Adler J. Back T. Petersen S. Reiman D. Clancy E. Zielinski M. Steinegger M. Pacholska M. Berghammer T. Bodenstein S. Silver D. Vinyals O. Senior A.W. Kavukcuoglu K. Kohli P. Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature 2021 596 7873 583 589 10.1038/s41586‑021‑03819‑2 34265844
    [Google Scholar]
  73. Brandes N. Ofer D. Peleg Y. Rappoport N. Linial M. ProteinBERT: A universal deep-learning model of protein sequence and function. Bioinformatics 2022 38 8 2102 2110 10.1093/bioinformatics/btac020 35020807
    [Google Scholar]
  74. Rives A. Meier J. Sercu T. Goyal S. Lin Z. Liu J. Guo D. Ott M. Zitnick C.L. Ma J. Fergus R. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. Proc. Natl. Acad. Sci. USA 2021 118 15 e2016239118 10.1073/pnas.2016239118 33876751
    [Google Scholar]
  75. Zhang H. Zhou Y. Zhang Z. Sun H. Pan Z. Mou M. Zhang W. Ye Q. Hou T. Li H. Hsieh C.Y. Zhu F. Large language model-based natural language encoding could be all you need for drug biomedical association prediction. Anal. Chem. 2024 96 30 acs.analchem.4c01793 10.1021/acs.analchem.4c01793 39011990
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936349783250101124112
Loading
/content/journals/cbio/10.2174/0115748936349783250101124112
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: GPCRs ; word embedding ; webserver ; feature extraction ; deep learning
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test