Skip to content
2000
image of Multiple Approaches to Identifying Key Genes Linked to the 
Anti-inflammatory Effects of Ginsenosides

Abstract

Ginsenoside is a naturally occurring active ingredient in ginseng, which mainly consists of four components, including Rb1, Rb2, Rc, and Rd, which are considered to be an important part of ginseng's medicinal effects. Ginsenosides can enhance the anti-fatigue ability of the body, regulate immune function, improve cardiovascular function, and have anti-aging, antioxidant, and neuroprotective effects. In recent years, many studies have found that ginsenosides have anti-inflammatory properties and are used in the treatment of many inflammatory diseases, such as endodontitis, bronchitis, and many others. Ginsenosides reduce inflammation by suppressing the release of inflammatory mediators, modulating inflammatory signaling pathways, 
scavenging free radicals, and modulating the immune system in a variety of ways. However, existing studies have not investigated the specific genes underlying the inflammation-reducing properties of ginsenosides. In this study, we analyzed two publicly accessible datasets from the GEO database (GSE255672 and GSE173990) to investigate the molecular basis of the anti-inflammatory effects of ginsenosides. This study aims to advance our understanding of how ginsenosides exert their anti-inflammatory properties, providing preliminary findings for identifying gene targets for their anti-inflammatory effects, thereby enhancing our understanding of their biological function and identifying new therapeutic pathways in the management of inflammation. It paves the way for further research of ginsenosides and therapeutic application of inflammation-related diseases.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936348266250225070200
2025-03-10
2025-07-12
The full text of this item is not currently available.

References

  1. Faienza M.F. Lassandro G. Chiarito M. Valente F. Ciaccia L. Giordano P. How physical activity across the lifespan can reduce the impact of bone ageing: A literature review. Int. J. Environ. Res. Public Health 2020 17 6 1862 10.3390/ijerph17061862 32183049
    [Google Scholar]
  2. Chen W. Balan P. Popovich D.G. Review of ginseng anti-diabetic studies. Molecules 2019 24 24 4501 10.3390/molecules24244501 31835292
    [Google Scholar]
  3. Zhou P. Xie W. He S. Sun Y. Meng X. Sun G. Sun X. Ginsenoside Rb1 as an anti-diabetic agent and its underlying mechanism analysis. Cells 2019 8 3 204 10.3390/cells8030204 30823412
    [Google Scholar]
  4. Luo M. Yan D. Sun Q. Tao J. Xu L. Sun H. Zhao H. Ginsenoside Rg1 attenuates cardiomyocyte apoptosis and inflammation via the TLR4/NF‐kB/NLRP3 pathway. J. Cell. Biochem. 2020 121 4 2994 3004 10.1002/jcb.29556 31709615
    [Google Scholar]
  5. Nakhjavani M. Smith E. Townsend A.R. Price T.J. Hardingham J.E. Anti-angiogenic properties of ginsenoside Rg3. Molecules 2020 25 21 4905 10.3390/molecules25214905 33113992
    [Google Scholar]
  6. Baik I.H. Kim K.H. Lee K.A. Antioxidant, anti-inflammatory and antithrombotic effects of ginsenoside compound K enriched extract derived from ginseng sprouts. Molecules 2021 26 13 4102 10.3390/molecules26134102 34279442
    [Google Scholar]
  7. Gao X.F. Zhang J.J. Gong X.J. Li K.K. Zhang L.X. Li W. Ginsenoside Rg5: A review of anticancer and neuroprotection with network pharmacology approach. Am. J. Chin. Med. 2022 50 8 2033 2056 10.1142/S0192415X22500872 36222119
    [Google Scholar]
  8. Xiaodan S. Ying C. Role of ginsenoside Rh2 in tumor therapy and tumor microenvironment immunomodulation. Biomed. Pharmacother. 2022 156 113912 10.1016/j.biopha.2022.113912 36288668
    [Google Scholar]
  9. Wang L. Zhang Y. Song Z. Liu Q. Fan D. Song X. Ginsenosides: A potential natural medicine to protect the lungs from lung cancer and inflammatory lung disease. Food Funct. 2023 14 20 9137 9166 10.1039/D3FO02482B 37801293
    [Google Scholar]
  10. Ren B. Feng J. Yang N. Guo Y. Chen C. Qin Q. Ginsenoside Rg3 attenuates angiotensin II-induced myocardial hypertrophy through repressing NLRP3 inflammasome and oxidative stress via modulating SIRT1/NF-κB pathway. Int. Immunopharmacol. 2021 98 107841 10.1016/j.intimp.2021.107841 34153662
    [Google Scholar]
  11. Hwang S.J. Bang H.J. Lee H.J. Ginsenoside Re inhibits melanogenesis and melanoma growth by downregulating microphthalmia-associated transcription factor. Biomed. Pharmacother. 2023 165 115037 10.1016/j.biopha.2023.115037 37393867
    [Google Scholar]
  12. Liu X. Mi X. Wang Z. Zhang M. Hou J. Jiang S. Wang Y. Chen C. Li W. Ginsenoside Rg3 promotes regression from hepatic fibrosis through reducing inflammation-mediated autophagy signaling pathway. Cell Death Dis. 2020 11 6 454 10.1038/s41419‑020‑2597‑7 32532964
    [Google Scholar]
  13. He Y. Hu C. Liu S. Xu M. Liang G. Du D. Liu T. Cai F. Chen Z. Tan Q. Deng L. Xia Q. Anti-inflammatory effects and molecular mechanisms of shenmai injection in treating acute pancreatitis: Network pharmacology analysis and experimental verification. Drug Des. Devel. Ther. 2022 16 2479 2495 10.2147/DDDT.S364352 35941928
    [Google Scholar]
  14. Lee W.J. Kim E.N. Trang N.M. Lee J.H. Cho S.H. Choi H.J. Song G.Y. Jeong G.S. Ameliorative effect of ginsenoside rg6 in periodontal tissue inflammation and recovering damaged alveolar bone. Molecules 2023 29 1 46 10.3390/molecules29010046 38202632
    [Google Scholar]
  15. Barrett T. Wilhite S.E. Ledoux P. Evangelista C. Kim I.F. Tomashevsky M. Marshall K.A. Phillippy K.H. Sherman P.M. Holko M. Yefanov A. Lee H. Zhang N. Robertson C.L. Serova N. Davis S. Soboleva A. NCBI GEO: Archive for functional genomics data sets--update. Nucleic Acids Res. 2013 41 Database issue D991 D995 [J]. 23193258
    [Google Scholar]
  16. Leek J.T. Johnson W.E. Parker H.S. Jaffe A.E. Storey J.D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 2012 28 6 882 883 10.1093/bioinformatics/bts034 22257669
    [Google Scholar]
  17. Ritchie M.E. Phipson B. Wu D. Hu Y. Law C.W. Shi W. Smyth G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015 43 7 e47 10.1093/nar/gkv007 25605792
    [Google Scholar]
  18. Wu T. Hu E. Xu S. Chen M. Guo P. Dai Z. Feng T. Zhou L. Tang W. Zhan L. Fu X. Liu S. Bo X. Yu G. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation 2021 2 3 100141 10.1016/j.xinn.2021.100141 34557778
    [Google Scholar]
  19. Galili T. O’Callaghan A. Sidi J. Sievert C. heatmaply: An R package for creating interactive cluster heatmaps for online publishing. Bioinformatics 2018 34 9 1600 1602 10.1093/bioinformatics/btx657 29069305
    [Google Scholar]
  20. Li J. Zhou D. Qiu W. Shi Y. Yang J.J. Chen S. Wang Q. Pan H. Application of weighted gene co-expression network analysis for data from paired design. Sci. Rep. 2018 8 1 622 10.1038/s41598‑017‑18705‑z 29330528
    [Google Scholar]
  21. Kolde R. Laur S. Adler P. Vilo J. Robust rank aggregation for gene list integration and meta-analysis. Bioinformatics 2012 28 4 573 580 10.1093/bioinformatics/btr709 22247279
    [Google Scholar]
  22. Yu G. Wang L.G. Han Y. He Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012 16 5 284 287 10.1089/omi.2011.0118 22455463
    [Google Scholar]
  23. Vural A. Fadillioglu E. Kelesoglu F. Ma D. Lanier S.M. Role of G-proteins and phosphorylation in the distribution of AGS3 to cell puncta. J. Cell Sci. 2018 131 23 jcs216507 10.1242/jcs.216507 30404823
    [Google Scholar]
  24. Yang C. Yaolin S. Lu W. Wenwen R. Hailei S. Han Z. Xiaoming X. G-protein signaling modulator 1 promotes colorectal cancer metastasis by PI3K/AKT/mTOR signaling and autophagy. Int. J. Biochem. Cell Biol. 2023 157 106388 10.1016/j.biocel.2023.106388 36758790
    [Google Scholar]
  25. Zhang L. Xu M. Zhang W. Zhu C. Cui Z. Fu H. Ma Y. Huang S. Cui J. Liang S. Huang L. Wang H. Three-dimensional genome landscape comprehensively reveals patterns of spatial gene regulation in papillary and anaplastic thyroid cancers: A study using representative cell lines for each cancer type. Cell. Mol. Biol. Lett. 2023 28 1 1 10.1186/s11658‑022‑00409‑6 36609218
    [Google Scholar]
  26. Tang M. Zhang Y. Zhang R. Zhang Y. Zheng J. Wang D. Wang X. Yan J. Hu C. GPSM1 in POMC neurons impairs brown adipose tissue thermogenesis and provokes diet-induced obesity. Mol. Metab. 2024 79 101839 10.1016/j.molmet.2023.101839 37979657
    [Google Scholar]
  27. Hara K. Fujita H. Johnson T.A. Yamauchi T. Yasuda K. Horikoshi M. Peng C. Hu C. Ma R.C.W. Imamura M. Iwata M. Tsunoda T. Morizono T. Shojima N. So W.Y. Leung T.F. Kwan P. Zhang R. Wang J. Yu W. Maegawa H. Hirose H. Kaku K. Ito C. Watada H. Tanaka Y. Tobe K. Kashiwagi A. Kawamori R. Jia W. Chan J.C.N. Teo Y.Y. Shyong T.E. Kamatani N. Kubo M. Maeda S. Kadowaki T. Genome-wide association study identifies three novel loci for type 2 diabetes. Hum. Mol. Genet. 2014 23 1 239 246 10.1093/hmg/ddt399 23945395
    [Google Scholar]
  28. Ding Q. Tan A.L.M. Parra E.J. Cruz M. Sim X. Teo Y.Y. Long J. Alsafar H. Petretto E. Tai E.S. Chen H. Genome-wide meta-analysis associates GPSM1 with type 2 diabetes, a plausible gene involved in skeletal muscle function. J. Hum. Genet. 2020 65 4 411 420 10.1038/s10038‑019‑0720‑3 31959871
    [Google Scholar]
  29. Branham-O’Connor M. Robichaux W.G. III Zhang X.K. Cho H. Kehrl J.H. Lanier S.M. Blumer J.B. Defective chemokine signal integration in leukocytes lacking activator of G protein signaling 3 (AGS3). J. Biol. Chem. 2014 289 15 10738 10747 10.1074/jbc.M113.515031 24573680
    [Google Scholar]
  30. Yan J. Zhang Y. Yu H. Zong Y. Wang D. Zheng J. Jin L. Yu X. Liu C. Zhang Y. Jiang F. Zhang R. Fang X. Xu T. Li M. Di J. Lu Y. Ma X. Zhang J. Jia W. Hu C. GPSM1 impairs metabolic homeostasis by controlling a pro-inflammatory pathway in macrophages. Nat. Commun. 2022 13 1 7260 10.1038/s41467‑022‑34998‑9 36434066
    [Google Scholar]
  31. Tsuchimoto D. Sakai Y. Sakumi K. Nishioka K. Sasaki M. Fujiwara T. Nakabeppu Y. Human APE2 protein is mostly localized in the nuclei and to some extent in the mitochondria, while nuclear APE2 is partly associated with proliferating cell nuclear antigen. Nucleic Acids Res. 2001 29 11 2349 2360 10.1093/nar/29.11.2349 11376153
    [Google Scholar]
  32. Burkovics P. Szukacsov V. Unk I. Haracska L. Human Ape2 protein has a 3′-5′ exonuclease activity that acts preferentially on mismatched base pairs. Nucleic Acids Res. 2006 34 9 2508 2515 10.1093/nar/gkl259 16687656
    [Google Scholar]
  33. Burkovics P. Hajdú I. Szukacsov V. Unk I. Haracska L. Role of PCNA-dependent stimulation of 3′-phosphodiesterase and 3′-5′ exonuclease activities of human Ape2 in repair of oxidative DNA damage. Nucleic Acids Res. 2009 37 13 4247 4255 10.1093/nar/gkp357 19443450
    [Google Scholar]
  34. Jia J. Abudu Y.P. Claude-Taupin A. Gu Y. Kumar S. Choi S.W. Peters R. Mudd M.H. Allers L. Salemi M. Phinney B. Johansen T. Deretic V. Galectins control MTOR and AMPK in response to lysosomal damage to induce autophagy. Autophagy 2019 15 1 169 171 10.1080/15548627.2018.1505155 30081722
    [Google Scholar]
  35. Jia J. Bissa B. Brecht L. Allers L. Choi S.W. Gu Y. Zbinden M. Burge M.R. Timmins G. Hallows K. Behrends C. Deretic V. AMPK, a Regulator of Metabolism and Autophagy, Is Activated by Lysosomal Damage via a Novel Galectin-Directed Ubiquitin Signal Transduction System. Mol. Cell 2020 77 5 951 969.e9 10.1016/j.molcel.2019.12.028 31995728
    [Google Scholar]
  36. Saha B. Salemi M. Williams G.L. Oh S. Paffett M.L. Phinney B. Mandell M.A. Interactomic analysis reveals a homeostatic role for the HIV restriction factor TRIM5α in mitophagy. Cell Rep. 2022 39 6 110797 10.1016/j.celrep.2022.110797 35545034
    [Google Scholar]
  37. Jia J. Claude-Taupin A. Gu Y. Choi S.W. Peters R. Bissa B. Mudd M.H. Allers L. Pallikkuth S. Lidke K.A. Salemi M. Phinney B. Mari M. Reggiori F. Deretic V. MERIT, a cellular system coordinating lysosomal repair, removal and replacement. Autophagy 2020 16 8 1539 1541 10.1080/15548627.2020.1779451 32521192
    [Google Scholar]
  38. Yuan S. Hahn S.A. Miller M.P. Sanker S. Calderon M.J. Sullivan M. Dosunmu-Ogunbi A.M. Fazzari M. Li Y. Reynolds M. Wood K.C. St Croix C.M. Stolz D. Cifuentes-Pagano E. Navas P. Shiva S. Schopfer F.J. Pagano P.J. Straub A.C. Cooperation between CYB5R3 and NOX4 via coenzyme Q mitigates endothelial inflammation. Redox Biol. 2021 47 102166 10.1016/j.redox.2021.102166 34656824
    [Google Scholar]
  39. Chitwood P.J. Juszkiewicz S. Guna A. Shao S. Hegde R.S. EMC is required to initiate accurate membrane protein topogenesis. Cell 2018 175 6 1507 1519.e16 10.1016/j.cell.2018.10.009 30415835
    [Google Scholar]
  40. Guna A. Volkmar N. Christianson J.C. Hegde R.S. The ER membrane protein complex is a transmembrane domain insertase. Science 2018 359 6374 470 473 10.1126/science.aao3099 29242231
    [Google Scholar]
  41. Shurtleff M.J. Itzhak D.N. Hussmann J.A. Schirle Oakdale N.T. Costa E.A. Jonikas M. Weibezahn J. Popova K.D. Jan C.H. Sinitcyn P. Vembar S.S. Hernandez H. Cox J. Burlingame A.L. Brodsky J.L. Frost A. Borner G.H.H. Weissman J.S. The ER membrane protein complex interacts cotranslationally to enable biogenesis of multipass membrane proteins. eLife 2018 7 e37018 10.7554/eLife.37018 29809151
    [Google Scholar]
  42. O’Donnell J.P. Phillips B.P. Yagita Y. Juszkiewicz S. Wagner A. Malinverni D. Keenan R.J. Miller E.A. Hegde R.S. The architecture of EMC reveals a path for membrane protein insertion. eLife 2020 9 e57887 10.7554/eLife.57887 32459176
    [Google Scholar]
  43. Goytain A. Quamme G.A. Identification and characterization of a novel family of membrane magnesium transporters, MMgT1 and MMgT2. Am. J. Physiol. Cell Physiol. 2008 294 2 C495 C502 10.1152/ajpcell.00238.2007 18057121
    [Google Scholar]
  44. Wang D. Zhu Z.L. Lin D.C. Zheng S.Y. Chuang K.H. Gui L.X. Yao R.H. Zhu W.J. Sham J.S.K. Lin M.J. Magnesium supplementation attenuates pulmonary hypertension via regulation of magnesium transporters. Hypertension 2021 77 2 617 631 10.1161/HYPERTENSIONAHA.120.14909 33356397
    [Google Scholar]
  45. Farkas R.M. Giansanti M.G. Gatti M. Fuller M.T. The Drosophila Cog5 homologue is required for cytokinesis, cell elongation, and assembly of specialized Golgi architecture during spermatogenesis. Mol. Biol. Cell 2003 14 1 190 200 10.1091/mbc.e02‑06‑0343 12529436
    [Google Scholar]
  46. Oka T. Vasile E. Penman M. Novina C.D. Dykxhoorn D.M. Ungar D. Hughson F.M. Krieger M. Genetic analysis of the subunit organization and function of the conserved oligomeric golgi (COG) complex: Studies of COG5- and COG7-deficient mammalian cells. J. Biol. Chem. 2005 280 38 32736 32745 10.1074/jbc.M505558200 16051600
    [Google Scholar]
  47. Ha J.Y. Pokrovskaya I.D. Climer L.K. Shimamura G.R. Kudlyk T. Jeffrey P.D. Lupashin V.V. Hughson F.M. Cog5–Cog7 crystal structure reveals interactions essential for the function of a multisubunit tethering complex. Proc. Natl. Acad. Sci. USA 2014 111 44 15762 15767 10.1073/pnas.1414829111 25331899
    [Google Scholar]
  48. Paesold-Burda P. Maag C. Troxler H. Foulquier F. Kleinert P. Schnabel S. Baumgartner M. Hennet T. Deficiency in COG5 causes a moderate form of congenital disorders of glycosylation. Hum. Mol. Genet. 2009 18 22 4350 4356 10.1093/hmg/ddp389 19690088
    [Google Scholar]
  49. Palmigiano A. Bua R.O. Barone R. Rymen D. Régal L. Deconinck N. Dionisi-Vici C. Fung C.W. Garozzo D. Jaeken J. Sturiale L. MALDI‐MS profiling of serum O ‐glycosylation and N ‐glycosylation in COG5‐CDG. J. Mass Spectrom. 2017 52 6 372 377 10.1002/jms.3936 28444691
    [Google Scholar]
  50. Ferrer A. Starosta R.T. Ranatunga W. Ungar D. Kozicz T. Klee E. Rust L.M. Wick M. Morava E. Fetal glycosylation defect due to ALG3 and COG5 variants detected via amniocentesis: Complex glycosylation defect with embryonic lethal phenotype. Mol. Genet. Metab. 2020 131 4 424 429 10.1016/j.ymgme.2020.11.003 33187827
    [Google Scholar]
  51. Wang X. Han L. Wang X.Y. Wang J.H. Li X.M. Jin C.H. Wang L. Identification of two novel mutations in COG5 causing congenital disorder of glycosylation. Front. Genet. 2020 11 168 10.3389/fgene.2020.00168 32174980
    [Google Scholar]
  52. Calvet J. Berenguer-Llergo A. Gay M. Massanella M. Domingo P. Llop M. Sánchez-Jiménez E. Arévalo M. Carrillo J. Albiñana N. Arauz-Garofalo G. Orellana C. Delgado J.F. Serrano A. Llobell A. Graell E. García-Manrique M. Moreno M. Galisteo C. Casado E. Navarro N. Gómez A. Garcia-Cirera S. Rusiñol M. Costa E. Clotet B. Vilaseca M. Blanco J. Gratacós J. Biomarker candidates for progression and clinical management of COVID-19 associated pneumonia at time of admission. Sci. Rep. 2022 12 1 640 10.1038/s41598‑021‑04683‑w 35022497
    [Google Scholar]
  53. Buggy J J Sideris M L Mak P Cloning and characterization of a novel human histone deacetylase, HDAC8. Biochem. J. 2000 350 Pt 1 199 205 10926844
    [Google Scholar]
  54. Hu E. Chen Z. Fredrickson T. Zhu Y. Kirkpatrick R. Zhang G.F. Johanson K. Sung C.M. Liu R. Winkler J. Cloning and characterization of a novel human class I histone deacetylase that functions as a transcription repressor. J. Biol. Chem. 2000 275 20 15254 15264 10.1074/jbc.M908988199 10748112
    [Google Scholar]
  55. Van den Wyngaert I. de Vries W. Kremer A. Neefs J.M. Verhasselt P. Luyten W.H.M.L. Kass S.U. Cloning and characterization of human histone deacetylase 8. FEBS Lett. 2000 478 1-2 77 83 10.1016/S0014‑5793(00)01813‑5 10922473
    [Google Scholar]
  56. Lee H. Rezai-Zadeh N. Seto E. Negative regulation of histone deacetylase 8 activity by cyclic AMP-dependent protein kinase A. Mol. Cell. Biol. 2004 24 2 765 773 10.1128/MCB.24.2.765‑773.2004 14701748
    [Google Scholar]
  57. Deardorff M.A. Bando M. Nakato R. Watrin E. Itoh T. Minamino M. Saitoh K. Komata M. Katou Y. Clark D. Cole K.E. De Baere E. Decroos C. Di Donato N. Ernst S. Francey L.J. Gyftodimou Y. Hirashima K. Hullings M. Ishikawa Y. Jaulin C. Kaur M. Kiyono T. Lombardi P.M. Magnaghi-Jaulin L. Mortier G.R. Nozaki N. Petersen M.B. Seimiya H. Siu V.M. Suzuki Y. Takagaki K. Wilde J.J. Willems P.J. Prigent C. Gillessen-Kaesbach G. Christianson D.W. Kaiser F.J. Jackson L.G. Hirota T. Krantz I.D. Shirahige K. HDAC8 mutations in Cornelia de Lange syndrome affect the cohesin acetylation cycle. Nature 2012 489 7415 313 317 10.1038/nature11316 22885700
    [Google Scholar]
  58. Kim D.S. Kwon J.E. Lee S.H. Kim E.K. Ryu J.G. Jung K.A. Choi J.W. Park M.J. Moon Y.M. Park S.H. Cho M.L. Kwok S.K. Attenuation of rheumatoid inflammation by sodium butyrate through reciprocal targeting of HDAC2 in osteoclasts and HDAC8 in T cells. Front. Immunol. 2018 9 1525 10.3389/fimmu.2018.01525 30034392
    [Google Scholar]
  59. Islam R. Singh R. Curcumin and PCI-34051 combined treatment ameliorates inflammation and fibrosis by affecting MAP kinase pathway. Inflammopharmacology 2023 31 6 3063 3079 10.1007/s10787‑023‑01371‑1 37934384
    [Google Scholar]
  60. Cheng X Shen S Transcriptional reprogramming in oral squamous carcinoma, 21 October 2024, PREPRINT (Version 1) available at Research Square Available from: https://www.researchgate.net/publication/385135538_Transcriptional_reprogramming_in_oral_squamous_carcinoma
/content/journals/cbio/10.2174/0115748936348266250225070200
Loading
/content/journals/cbio/10.2174/0115748936348266250225070200
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: biological function ; anti-inflammatory ; WGCNA ; RRA ; Ginsenoside ; key gene
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test