Skip to content
2000
image of GVNNVAE: A Novel Microbe-Drug Association Prediction Model based on an Improved Graph Neural Network and the Variational Auto-Encoder

Abstract

Microorganisms play a crucial role in human health and disease. Identifying potential microbe-drug associations is essential for drug discovery and clinical treatment. In this manuscript, we proposed a novel prediction model named GVNNVAE by combining an Improved Graph Neural Network (GNN) and the Variational Auto-Encoder (VAE) to infer potential microbe-drug associations. In GVNNVAE, we first established a heterogeneous microbe-drug network by integrating multiple similarity metrics of microbes, drugs, and diseases. Subsequently, we introduced an improved GNN and the VAE to extract topological and attribute representations for nodes in respectively. Finally, through incorporating various original attributes of microbes and drugs with above two kinds of newly obtained topological and attribute representations, predicted scores of potential microbe-drug associations would be calculated. Furthermore, To evaluate the prediction performance of GVNNVAE, intensive experiments were done and comparative results showed that GVNNVAE could achieve a satisfactory AUC value of 0.9688, which outperformed existing competitive state-of-the-art methods. And moreover, case studies of known microbes and drugs confirmed the effectiveness of GVNNVAE as well, which highlighted its potential for predicting latent microbe-drug associations.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936331907240927141428
2024-10-31
2025-01-19
Loading full text...

Full text loading...

References

  1. Curtis H. Blaser MJ. Dirk G. Structure, function and diversity of the healthy human microbiome. Nature 2012 486 7402 207 214 10.1038/nature11234 22699609
    [Google Scholar]
  2. Ventura M. O’Flaherty S. Claesson M.J. Turroni F. Klaenhammer T.R. van Sinderen D. O’Toole P.W. Genome-scale analyses of health-promoting bacteria: Probiogenomics. Nat. Rev. Microbiol. 2009 7 1 61 71 10.1038/nrmicro2047 19029955
    [Google Scholar]
  3. Sprockett D. Fukami T. Relman D.A. Role of priority effects in the early-life assembly of the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 2018 15 4 197 205 10.1038/nrgastro.2017.173 29362469
    [Google Scholar]
  4. Ximenez C. Torres J. Development of microbiota in infants and its role in maturation of gut mucosa and immune system. Arch. Med. Res. 2017 48 8 666 680 10.1016/j.arcmed.2017.11.007 29198451
    [Google Scholar]
  5. Zhang H. DiBaise J.K. Zuccolo A. Kudrna D. Braidotti M. Yu Y. Parameswaran P. Crowell M.D. Wing R. Rittmann B.E. Krajmalnik-Brown R. Human gut microbiota in obesity and after gastric bypass. Proc. Natl. Acad. Sci. USA 2009 106 7 2365 2370 10.1073/pnas.0812600106 19164560
    [Google Scholar]
  6. Wen L. Ley R.E. Volchkov P.Y. Stranges P.B. Avanesyan L. Stonebraker A.C. Hu C. Wong F.S. Szot G.L. Bluestone J.A. Gordon J.I. Chervonsky A.V. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 2008 455 7216 1109 1113 10.1038/nature07336 18806780
    [Google Scholar]
  7. Lynch S.V. Pedersen O. The human intestinal microbiome in health and disease. N. Engl. J. Med. 2016 375 24 2369 2379 10.1056/NEJMra1600266 27974040
    [Google Scholar]
  8. Sepich-Poore G.D. Zitvogel L. Straussman R. Hasty J. Wargo J.A. Knight R. The microbiome and human cancer. Science 2021 371 6536 eabc4552 10.1126/science.abc4552 33766858
    [Google Scholar]
  9. Xiang Y.T. Li W. Zhang Q. Jin Y. Rao W.W. Zeng L.N. Lok G.K.I. Chow I.H.I. Cheung T. Hall B.J. Timely research papers about COVID-19 in China. Lancet 2020 395 10225 684 685 10.1016/S0140‑6736(20)30375‑5 32078803
    [Google Scholar]
  10. Shamshirband S. Fathi M. Dehzangi A. Chronopoulos A.T. Alinejad-Rokny H. A review on deep learning approaches in healthcare systems: Taxonomies, challenges, and open issues. J. Biomed. Inform. 2021 113 103627 10.1016/j.jbi.2020.103627 33259944
    [Google Scholar]
  11. Zhang Y. Ye T. Xi H. Juhas M. Li J. Deep learning driven drug discovery: Tackling severe acute respiratory syndrome coronavirus 2. Front. Microbiol. 2021 12 739684 10.3389/fmicb.2021.739684 34777286
    [Google Scholar]
  12. Deng Y. Xu X. Qiu Y. Xia J. Zhang W. Liu S. A multimodal deep learning framework for predicting drug–drug interaction events. Bioinformatics 2020 36 15 4316 4322 10.1093/bioinformatics/btaa501 32407508
    [Google Scholar]
  13. Gligorijević V. Renfrew P.D. Kosciolek T. Leman J.K. Berenberg D. Vatanen T. Chandler C. Taylor B.C. Fisk I.M. Vlamakis H. Xavier R.J. Knight R. Cho K. Bonneau R. Structure-based protein function prediction using graph convolutional networks. Nat. Commun. 2021 12 1 3168 10.1038/s41467‑021‑23303‑9 34039967
    [Google Scholar]
  14. Deif M.A. Solyman A.A.A. Kamarposhti M.A. Band S.S. Hammam R.E. A deep bidirectional recurrent neural network for identification of SARS-CoV-2 from viral genome sequences. Math. Biosci. Eng. 2021 18 6 8933 8950 10.3934/mbe.2021440 34814329
    [Google Scholar]
  15. Shu J. Li Y. Wang S. Xi B. Ma J. Disease gene prediction with privileged information and heteroscedastic dropout. Bioinformatics 2021 37 i410 i417 10.1093/bioinformatics/btab310 34252957
    [Google Scholar]
  16. Chen X. Huang Y.A. You Z.H. Yan G.Y. Wang X.S. A novel approach based on KATZ measure to predict associations of human microbiota with non-infectious diseases. Bioinformatics 2017 33 5 733 739 10.1093/bioinformatics/btw715 28025197
    [Google Scholar]
  17. Li H. Wang Y. Jiang J. Zhao H. Feng X. Zhao B. Wang L. A novel human microbe-disease association prediction method based on the bidirectional weighted network. Front. Microbiol. 2019 10 676 10.3389/fmicb.2019.00676 31024478
    [Google Scholar]
  18. Jiang C. Tang M. Jin S. Huang W. Liu X. KGNMDA: A knowledge graph neural network method for predicting microbe-disease associations. IEEE/ACM Trans. Comput. Biol. Bioinform. 2023 20 2 1147 1155 10.1109/TCBB.2022.3184362
    [Google Scholar]
  19. Peng L. Zhou D. Liu W. Zhou L. Wang L. Zhao B. Yang J. Prioritizing human microbe-disease associations utilizing a node-information-based link propagation method. IEEE Access 2020 8 31341 31349 10.1109/ACCESS.2020.2972283
    [Google Scholar]
  20. Hua M. Yu S. Liu T. Yang X. Wang H. MVGCNMDA: Multi-view graph augmentation convolutional network for uncovering disease-related microbes. Interdiscip. Sci. 2022 14 3 669 682 10.1007/s12539‑022‑00514‑2 35428964
    [Google Scholar]
  21. Li H. Wang Y. Zhang Z. Identifying microbe-disease association based on a novel back-propagation neural network model. IEEE/ACM Trans. Comput. Biol. Bioinform. 2021 18 6 2502 2513 10.1109/TCBB.2020.2986459
    [Google Scholar]
  22. Fan Y. Chen M. Zhu Q. Wang W. Inferring disease-associated microbes based on multi-data integration and network consistency projection. Front. Bioeng. Biotechnol. 2020 8 831 10.3389/fbioe.2020.00831 32850711
    [Google Scholar]
  23. Liu D. Liu J. Luo Y. He Q. Deng L. 2022 MGATMDA: Predicting microbe-disease associations via multi-component graph attention network. IEEE/ACM Trans. Comput. Biol. Bioinform. 2022 19 6 3578 3585 10.1109/TCBB.2021.3116318
    [Google Scholar]
  24. Deng L. Huang Y. Liu X. Liu H. Graph2MDA: A multi-modal variational graph embedding model for predicting microbe–drug associations. Bioinformatics 2022 38 4 1118 1125 10.1093/bioinformatics/btab792 34864873
    [Google Scholar]
  25. Chen Y. Lei X. Metapath aggregated graph neural network and tripartite heterogeneous networks for microbe-disease prediction. Front. Microbiol. 2022 13 919380 10.3389/fmicb.2022.919380 35711758
    [Google Scholar]
  26. Liu W. Tang T. Lu X. Fu X. Yang Y. Peng L. MPCLCDA: Predicting circRNA–disease associations by using automatically selected meta-path and contrastive learning. Brief. Bioinform. 2023 24 4 bbad227 10.1093/bib/bbad227 37328701
    [Google Scholar]
  27. Peng L. Yang C. Chen Y. Liu W. Predicting circrna-disease associations via feature convolution learning with heterogeneous graph attention network. IEEE J. Biomed. Health Inform. 2023 27 6 3072 3082 10.1109/JBHI.2023.3260863 37030839
    [Google Scholar]
  28. Wang L. Tan Y. Yang X. Kuang L. Ping P. Review on predicting pairwise relationships between human microbes, drugs and diseases: From biological data to computational models. Brief. Bioinform. 2022 23 3 bbac080 10.1093/bib/bbac080 35325024
    [Google Scholar]
  29. Ma Q. Tan Y. Wang L. GACNNMDA: A computational model for predicting potential human microbe-drug associations based on graph attention network and CNN-based classifier. BMC Bioinformatics 2023 24 1 35 10.1186/s12859‑023‑05158‑7 36732704
    [Google Scholar]
  30. Xu D. Xu H. Zhang Y. Wang M. Chen W. Gao R. MDAKRLS: Predicting human microbe-disease association based on Kronecker regularized least squares and similarities. J. Transl. Med. 2021 19 1 66 10.1186/s12967‑021‑02732‑6 33579301
    [Google Scholar]
  31. Xu K. Hu W. Leskovec J. Jegelka S. How powerful are graph neural networks? ArXiv 2019
    [Google Scholar]
  32. Gilmer J. Schoenholz S.S. Riley P.F. Vinyals O. Dahl G.E. Neural message passing for quantum chemistry. Proceedings of the 34th International Conference on Machine Learning Sydney, Australia 1263 1272 2017
    [Google Scholar]
  33. Chen Z. Chen L. Villar S. Bruna J. Can graph neural networks count substructures? Advances in Neural Information Processing Systems 33 Curran Associates, Inc. Larochelle H. Ranzato M. Hadsell R. Balcan MF. Lin H. 2020 10383 10395
    [Google Scholar]
  34. Corso G. Cavalleri L. Beaini D. Liò P. Veličković P. Principal neighbourhood aggregation for graph nets. Advances in Neural Information Processing Systems 33 Curran Associates, Inc. Larochelle H. Ranzato M. Hadsell R. Balcan MF. Lin H. 2020 13260 13271
    [Google Scholar]
  35. Kingma D.P. Ba J. Adam: A method for stochastic optimization. ArXiv 2017
    [Google Scholar]
  36. Luo J. Long Y. NTSHMDA: Prediction of human microbe-disease association based on random walk by integrating network topological similarity. IEEE/ACM Trans. Comput. Biol. Bioinform. 2020 17 4 1341 1351 10.1109/TCBB.2018.2883041
    [Google Scholar]
  37. Köhler S. Bauer S. Horn D. Robinson P.N. Walking the interactome for prioritization of candidate disease genes. Am. J. Hum. Genet. 2008 82 4 949 958 10.1016/j.ajhg.2008.02.013 18371930
    [Google Scholar]
  38. Kamneva O.K. Genome composition and phylogeny of microbes predict their co-occurrence in the environment. PLOS Comput. Biol. 2017 13 2 e1005366 10.1371/journal.pcbi.1005366 28152007
    [Google Scholar]
  39. Tan Y. Zou J. Kuang L. Wang X. Zeng B. Zhang Z. Wang L. GSAMDA: A computational model for predicting potential microbe–drug associations based on graph attention network and sparse autoencoder. BMC Bioinformatics 2022 23 1 492 10.1186/s12859‑022‑05053‑7 36401174
    [Google Scholar]
  40. Yu Z. Huang F. Zhao X. Xiao W. Zhang W. Predicting drug–disease associations through layer attention graph convolutional network. Brief. Bioinform. 2021 22 4 bbaa243 10.1093/bib/bbaa243 33078832
    [Google Scholar]
  41. Zhu L. Duan G. Yan C. Wang J. Prediction of microbe-drug associations based on katz measure. IEEE International Conference on Bioinformatics and Biomedicine (BIBM) 2019 San Diego, CA, USA 183 187 10.1109/BIBM47256.2019.8983209
    [Google Scholar]
  42. McCurdy S. Lawrence L. Quintas M. Woosley L. Flamm R. Tseng C. Cammarata S. In vitro activity of delafloxacin and microbiological response against fluoroquinolone-susceptible and nonsusceptible Staphylococcus aureus isolates from two phase 3 studies of acute bacterial skin and skin structure infections. Antimicrob. Agents Chemother. 2017 61 9 e00772-17 10.1128/AAC.00772‑17 28630189
    [Google Scholar]
  43. Rehman A. Patrick W.M. Lamont I.L. Mechanisms of ciprofloxacin resistance in Pseudomonas aeruginosa: New approaches to an old problem. J. Med. Microbiol. 2019 68 1 1 10 10.1099/jmm.0.000873 30605076
    [Google Scholar]
  44. Liu X. Xiang L. Yin Y. Li H. Ma D. Qu Y. Pneumonia caused by Pseudomonas fluorescens: A case report. BMC Pulm. Med. 2021 21 1 212 10.1186/s12890‑021‑01573‑9 34225696
    [Google Scholar]
  45. Trinh S.A. Gavin H.E. Satchell K.J.F. Efficacy of ceftriaxone, cefepime, doxycycline, ciprofloxacin, and combination therapy for Vibrio vulnificus foodborne septicemia. Antimicrob. Agents Chemother. 2017 61 12 e01106-17 10.1128/AAC.01106‑17 28971862
    [Google Scholar]
  46. Yang Z. Wang L. Zhang X. Zeng B. Zhang Z. Liu X. LCASPMDA: A computational model for predicting potential microbe-drug associations based on learnable graph convolutional attention networks and self-paced iterative sampling ensemble. Front. Microbiol. 2024 15 1366272 10.3389/fmicb.2024.1366272 38846568
    [Google Scholar]
  47. Barman Balfour J.A. Wiseman L.R. Moxifloxacin. Drugs 1999 57 3 363 373 10.2165/00003495‑199957030‑00007 10193688
    [Google Scholar]
  48. Gislason A.S. Choy M. Bloodworth R.A.M. Qu W. Stietz M.S. Li X. Zhang C. Cardona S.T. Competitive growth enhances conditional growth mutant sensitivity to antibiotics and exposes a two-component system as an emerging antibacterial target in burkholderia cenocepacia. Antimicrob. Agents Chemother. 2017 61 1 e00790-16 10.1128/AAC.00790‑16 27799222
    [Google Scholar]
  49. Tahoun A.B.M.B. Abou Elez R.M.M. Abdelfatah E.N. Elsohaby I. El-Gedawy A.A. Elmoslemany A.M. Listeria monocytogenes in raw milk, milking equipment and dairy workers: Molecular characterization and antimicrobial resistance patterns. J. Glob. Antimicrob. Resist. 2017 10 264 270 10.1016/j.jgar.2017.07.008 28739228
    [Google Scholar]
  50. Chon J.W. Seo K.H. Bae D. Park J.H. Khan S. Sung K. Prevalence, toxin gene profile, antibiotic resistance, and molecular characterization of Clostridium perfringens from diarrheic and non-diarrheic dogs in Korea. J. Vet. Sci. 2018 19 3 368 374 10.4142/jvs.2018.19.3.368 29486533
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936331907240927141428
Loading
/content/journals/cbio/10.2174/0115748936331907240927141428
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test