Skip to content
2000
image of A Method of Enhancing Heterogeneous Graph Representation for Predicting the Associations between lncRNAs and Diseases

Abstract

Background

Long non-coding RNAs (lncRNAs) are a category of more extended RNA strands that lack protein-coding abilities. Although they are not involved in the translation of proteins, studies have shown that they play essential regulatory functions in cells, regulating gene expression and cell biological processes. However, it is both costly and inefficient to determine the associations between lncRNAs and diseases through biological experiments. Therefore, there is an urgent need to develop convenient and fast computational methods to predict lncRNA-disease associations (LDAs) more efficiently.

Objective

Predicting disease-associated lncRNAs can help explore the mechanisms of action of lncRNAs in diseases, and this is crucial for early intervention and treatment of diseases.

Methods

In this paper, we propose an enhanced heterogeneous graph representation method for predicting LDAs, named GCGALDA. The GCGALDA first obtains the topological structure features of nodes by a biased random walk. Based on this, the neighboring nodes of a node are weighted using the attention mechanism to further mine the semantic association relationships between nodes in the graph data. Then, a graph convolution network (GCN) is used to transfer the neighborhood features of the node to the central node and combine them with the node's features so that the final node representation contains not only structural information but also semantic association information. Finally, the association score between lncRNA and disease is obtained by multilayer perceptron (MLP).

Results

As evidenced by the experimental findings, the GCGALDA outperforms other advanced models in terms of prediction accuracy on openly accessible databases. In addition, case studies on several human diseases further confirm the predictive ability of the GCGALDA.

Conclusion

In conclusion, the proposed GCGALDA model extracts multi-perspective features, such as topology, semantic association, and node attributes, obtains high-quality heterogeneous graph node representations, and effectively improves the performance of the LDA prediction model.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936324054240903105015
2024-11-06
2025-01-19
Loading full text...

Full text loading...

References

  1. Zhang Y. Ye F. Gao X. MCA-Net: Multi-Feature Coding and Attention Convolutional Neural Network for Predicting lncRNA-Disease Association. IEEE/ACM Trans. Comput. Biol. Bioinformatics 2022 19 5 2907 2919 10.1109/TCBB.2021.3098126 34283719
    [Google Scholar]
  2. Wang Y. Zhang L. Kong R. Hu C. Zhao Z. Wu Y. Zuo Q. Li B. Zhang Y. Jun‐mediated lncRNA‐IMS promotes the meiosis of chicken spermatogonial stem cells via gga‐miR‐31‐5p/stra8. Mol. Reprod. Dev. 2023 90 5 275 286 10.1002/mrd.23682 36966461
    [Google Scholar]
  3. Chen X. Sun Y.Z. Guan N.N. Qu J. Huang Z.A. Zhu Z.X. Li J.Q. Computational models for lncRNA function prediction and functional similarity calculation. Brief. Funct. Genomics 2019 18 1 58 82 10.1093/bfgp/ely031 30247501
    [Google Scholar]
  4. Long Y. Wang X. Youmans D.T. Cech T.R. How do lncRNAs regulate transcription? Sci. Adv. 2017 3 9 eaao2110 10.1126/sciadv.aao2110 28959731
    [Google Scholar]
  5. Zhang G. Lan Y. Xie A. Shi J. Zhao H. Xu L. Zhu S. Luo T. Zhao T. Xiao Y. Li X. Comprehensive analysis of long noncoding RNA (lncRNA)-chromatin interactions reveals lncRNA functions dependent on binding diverse regulatory elements. J. Biol. Chem. 2019 294 43 15613 15622 10.1074/jbc.RA119.008732 31484726
    [Google Scholar]
  6. Bhat A. Ghatage T. Bhan S. Lahane G.P. Dhar A. Kumar R. Pandita R.K. Bhat K.M. Ramos K.S. Pandita T.K. Role of Transposable Elements in Genome Stability: Implications for Health and Disease. Int. J. Mol. Sci. 2022 23 14 7802 10.3390/ijms23147802 35887150
    [Google Scholar]
  7. Li J. Tian H. Yang J. Gong Z. Long Noncoding RNAs Regulate Cell Growth, Proliferation, and Apoptosis. DNA Cell Biol. 2016 35 9 459 470 10.1089/dna.2015.3187 27213978
    [Google Scholar]
  8. Farooqi A.A. Fayyaz S. Poltronieri P. Calin G. Mallardo M. Epigenetic deregulation in cancer: Enzyme players and non-coding RNAs. Semin. Cancer Biol. 2022 83 197 207 10.1016/j.semcancer.2020.07.013 32738290
    [Google Scholar]
  9. Statello L. Guo C.J. Chen L.L. Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 2021 22 2 96 118 10.1038/s41580‑020‑00315‑9 33353982
    [Google Scholar]
  10. Xuan P. Zhao Y. Cui H. Zhan L. Jin Q. Zhang T. Nakaguchi T. Semantic Meta-Path Enhanced Global and Local Topology Learning for lncRNA-Disease Association Prediction. IEEE/ACM Trans. Comput. Biol. Bioinformatics 2023 20 2 1480 1491 10.1109/TCBB.2022.3209571 36173783
    [Google Scholar]
  11. Zhang Y. Ye F. Xiong D. Gao X. LDNFSGB: Prediction of long non-coding rna and disease association using network feature similarity and gradient boosting. BMC Bioinformatics 2020 21 1 377 10.1186/s12859‑020‑03721‑0 32883200
    [Google Scholar]
  12. Yu J. Xuan Z. Feng X. Zou Q. Wang L. A novel collaborative filtering model for LncRNA-disease association prediction based on the Naïve Bayesian classifier. BMC Bioinformatics 2019 20 1 396 10.1186/s12859‑019‑2985‑0 31315558
    [Google Scholar]
  13. Zhu R. Wang Y. Liu J.X. Dai L.Y. IPCARF: Improving lncRNA-disease association prediction using incremental principal component analysis feature selection and a random forest classifier. BMC Bioinformatics 2021 22 1 175 10.1186/s12859‑021‑04104‑9 33794766
    [Google Scholar]
  14. Li J. Zhao H. Xuan Z. Yu J. Feng X. Liao B. Wang L. A Novel Approach for Potential Human LncRNA-Disease Association Prediction Based on Local Random Walk. IEEE/ACM Trans. Comput. Biol. Bioinformatics 2021 18 3 1049 1059 10.1109/TCBB.2019.2934958 31425046
    [Google Scholar]
  15. Chen X. Yan C.C. Zhang X. You Z-H. Long non-coding RNAs and complex diseases: From experimental results to computational models. Brief. Bioinform. 2016 2016 bbw060 10.1093/bib/bbw060 27345524
    [Google Scholar]
  16. Fu G. Wang J. Domeniconi C. Yu G. Matrix factorization-based data fusion for the prediction of lncRNA–disease associations. Bioinformatics 2018 34 9 1529 1537 10.1093/bioinformatics/btx794 29228285
    [Google Scholar]
  17. Wang H. Tang J. Ding Y. Guo F. Exploring associations of non-coding RNAs in human diseases via three-matrix factorization with hypergraph-regular terms on center kernel alignment. Brief. Bioinform. 2021 22 5 bbaa409 10.1093/bib/bbaa409 33443536
    [Google Scholar]
  18. Fan Y. Chen M. Pan X. GCRFLDA: Scoring lncRNA-disease associations using graph convolution matrix completion with conditional random field. Brief. Bioinform. 2022 23 1 bbab361 10.1093/bib/bbab361 34486019
    [Google Scholar]
  19. Xi W.Y. Zhou F. Gao Y.L. Liu J.X. Zheng C.H. LDCMFC: Predicting Long Non-Coding RNA and Disease Association Using Collaborative Matrix Factorization Based on Correntropy. IEEE/ACM Trans. Comput. Biol. Bioinformatics 2023 20 3 1774 1782 10.1109/TCBB.2022.3215194 36251902
    [Google Scholar]
  20. Zhang J. Zhang Z. Chen Z. Deng L. Integrating Multiple Heterogeneous Networks for Novel LncRNA-Disease Association Inference. IEEE/ACM Trans. Comput. Biol. Bioinformatics 2019 16 2 396 406 10.1109/TCBB.2017.2701379 28489543
    [Google Scholar]
  21. Li J. Wang D. Yang Z. HEGANLDA: A computational model for predicting potential lncRNA-disease associations based on multiple heterogeneous networks. IEEE/ACM Trans. Comput. Biol. Bioinformatics 2021 2021 1 1
    [Google Scholar]
  22. Zhou J.R. You Z.H. Cheng L. Ji B.Y. Prediction of lncRNA-disease associations via an embedding learning HOPE in heterogeneous information networks. Mol. Ther. Nucleic Acids 2021 23 277 285 10.1016/j.omtn.2020.10.040 33425486
    [Google Scholar]
  23. Zhang P. Zhang W. Sun W. Li L. Xu J. Wang L. Wong L. A lncRNA-disease association prediction tool development based on bridge heterogeneous information network via graph representation learning for family medicine and primary care. Front. Genet. 2023 14 1084482 10.3389/fgene.2023.1084482 37274787
    [Google Scholar]
  24. Fan Y. Chen M. Zhu Q. Wang W. Inferring Disease-associated microbes based on multi-data integration and network consistency projection. Front. Bioeng. Biotechnol. 2020 8 831 10.3389/fbioe.2020.00831 32850711
    [Google Scholar]
  25. Xie G.B. Chen R.B. Lin Z.Y. Gu G.S. Yu J.R. Liu Z. Cui J. Lin L. Chen L. Predicting lncRNA–disease associations based on combining selective similarity matrix fusion and bidirectional linear neighborhood label propagation. Brief. Bioinform. 2023 24 1 bbac595 10.1093/bib/bbac595 36592062
    [Google Scholar]
  26. Chen G. Wang Z. Wang D. Qiu C. Liu M. Chen X. Zhang Q. Yan G. Cui Q. LncRNADisease: A database for long-non-coding RNA-associated diseases. Nucleic Acids Res. 2013 41 D983 D986 23175614
    [Google Scholar]
  27. Wang J.Z. Du Z. Payattakool R. Yu P.S. Chen C.F. A new method to measure the semantic similarity of GO terms. Bioinformatics 2007 23 10 1274 1281 10.1093/bioinformatics/btm087 17344234
    [Google Scholar]
  28. Luo J. Xiao Q. Liang C. Ding P. Predicting MicroRNA-Disease Associations Using Kronecker Regularized Least Squares Based on Heterogeneous Omics Data. IEEE Access 2017 5 2503 2513 10.1109/ACCESS.2017.2672600
    [Google Scholar]
  29. van Laarhoven T. Nabuurs S.B. Marchiori E. Gaussian interaction profile kernels for predicting drug–target interaction. Bioinformatics 2011 27 21 3036 3043 10.1093/bioinformatics/btr500 21893517
    [Google Scholar]
  30. Grover A Leskovec J. node2vec: Scalable Feature Learning for Networks. arXiv:160700653 2016
    [Google Scholar]
  31. Clevert D-A Unterthiner T Hochreiter S Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs). arXiv:151107289 2016
    [Google Scholar]
  32. Kipf T N Welling M. Semi-Supervised Classification with Graph Convolutional Networks. arXiv:160902907 2017
    [Google Scholar]
  33. Liu H. Bing P. Zhang M. Tian G. Ma J. Li H. Bao M. He K. He J. He B. Yang J. MNNMDA: Predicting human microbe-disease association via a method to minimize matrix nuclear norm. Comput. Struct. Biotechnol. J. 2023 21 1414 1423 10.1016/j.csbj.2022.12.053 36824227
    [Google Scholar]
  34. Li M. Fan Y. Zhang Y. Lv Z. Using Sequence Similarity Based on CKSNP Features and a Graph Neural Network Model to Identify miRNA–Disease Associations. Genes (Basel) 2022 13 10 1759 10.3390/genes13101759 36292644
    [Google Scholar]
  35. Li P. Tiwari P. Xu J. Qian Y. Ai C. Ding Y. Guo F. Sparse regularized joint projection model for identifying associations of non-coding RNAs and human diseases. Knowl. Base. Syst. 2022 258 110044 10.1016/j.knosys.2022.110044
    [Google Scholar]
  36. Zeng M. Lu C. Fei Z. Wu F.X. Li Y. Wang J. Li M. DMFLDA: A Deep Learning Framework for Predicting lncRNA–Disease Associations. IEEE/ACM Trans. Comput. Biol. Bioinformatics 2021 18 6 2353 2363 10.1109/TCBB.2020.2983958 32248123
    [Google Scholar]
  37. Shi Z. Zhang H. Jin C. Quan X. Yin Y. A representation learning model based on variational inference and graph autoencoder for predicting lncRNA-disease associations. BMC Bioinformatics 2021 22 1 136 10.1186/s12859‑021‑04073‑z 33745450
    [Google Scholar]
  38. Xie G. Huang Z. Liu Z. Lin Z. Ma L. NCPHLDA: A novel method for human lncRNA–disease association prediction based on network consistency projection. Mol. Omics 2019 15 6 442 450 10.1039/C9MO00092E 31686064
    [Google Scholar]
  39. Qin W. Wang X. Wang Y. Li Y. Chen Q. Hu X. Wu Z. Zhao P. Li S. Zhao H. Yao W. Ding J. Wei M. Wu H. Functional polymorphisms of the lncRNA H19 promoter region contribute to the cancer risk and clinical outcomes in advanced colorectal cancer. Cancer Cell Int. 2019 19 1 215 10.1186/s12935‑019‑0895‑x 31452627
    [Google Scholar]
  40. Wu E.R. Chou Y.E. Liu Y.F. Hsueh K.C. Lee H.L. Yang S.F. Su S.C. Association of lncRNA H19 Gene Polymorphisms with the Occurrence of Hepatocellular Carcinoma. Genes (Basel) 2019 10 7 506 10.3390/genes10070506 31277475
    [Google Scholar]
  41. Bray F. Ferlay J. Soerjomataram I. Siegel R.L. Torre L.A. Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018 68 6 394 424 10.3322/caac.21492 30207593
    [Google Scholar]
  42. Han P. Li J. Zhang B. Lv J. Li Y. Gu X. Yu Z. Jia Y. Bai X. Li L. Liu Y. Cui B. The lncRNA CRNDE promotes colorectal cancer cell proliferation and chemoresistance via miR-181a-5p-mediated regulation of Wnt/β-catenin signaling. Mol. Cancer 2017 16 1 9 10.1186/s12943‑017‑0583‑1 28086904
    [Google Scholar]
  43. Fang C. Qiu S. Sun F. Li W. Wang Z. Yue B. Wu X. Yan D. Long non-coding RNA HNF1A-AS1 mediated repression of miR-34a/SIRT1/p53 feedback loop promotes the metastatic progression of colon cancer by functioning as a competing endogenous RNA. Cancer Lett. 2017 410 50 62 10.1016/j.canlet.2017.09.012 28943452
    [Google Scholar]
  44. Ding K. Liao Y. Gong D. Zhao X. Ji W. Effect of long non-coding RNA H19 on oxidative stress and chemotherapy resistance of CD133+ cancer stem cells via the MAPK/ERK signaling pathway in hepatocellular carcinoma. Biochem. Biophys. Res. Commun. 2018 502 2 194 201 10.1016/j.bbrc.2018.05.143 29800569
    [Google Scholar]
  45. Lee Y.J. Lee J.M. Lee J.S. Lee H.Y. Park B.H. Kim Y.H. Han J.K. Choi B.I. Hepatocellular carcinoma: Diagnostic performance of multidetector CT and MR imaging-a systematic review and meta-analysis. Radiology 2015 275 1 97 109 10.1148/radiol.14140690 25559230
    [Google Scholar]
  46. Xie G. Meng T. Luo Y. Liu Z. SKF-LDA: Similarity Kernel Fusion for Predicting lncRNA-Disease Association. Mol. Ther. Nucleic Acids 2019 18 45 55 10.1016/j.omtn.2019.07.022 31514111
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936324054240903105015
Loading
/content/journals/cbio/10.2174/0115748936324054240903105015
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test