Skip to content
2000
image of Screening of Candidate Chemical Regulators for the m6A Writer MTA in Arabidopsis

Abstract

Background

The gene encodes a core component of m6A methyltransferase complex, which plays a crucial role in the post-transcriptional modification of RNA that influences many vital processes in plants. However, due to the constraint of embryonic lethality in knockout mutation, the molecular function of gene has yet to be comprehensively investigated.

Objective

The aim of this study is to investigate the expression and regulation of in

Methods

A large-scale transcriptome and genome analysis were carried out for the expression and nsSNP (non-synonymous Single Nucleotide Polymorphism) studies. Structured-based virtual screening, molecular dynamics simulation, binding free energy calculation and m6A modification level assay were employed to mine and validate MTA regulators from COCONUT natural product database.

Results

Tissue-specific expression and stress-responsive expression patterns of were observed in nsSNPs from the 1,001 project were not detected in the binding site of the methyl-donor substrate S-adenosylmethionine (SAM) in MTA. 10 small molecules were identified as potential regulators, among which CNP0251613 (adenosine diphosphate glucose, ADPG) was selected and validated to decrease m6A levels at 10µM the control in .

Conclusion

Our results provide a new insight and chemical entity into the in-depth study of RNA m6A writer in plants.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936324036241016070320
2025-01-07
2025-05-11
Loading full text...

Full text loading...

References

  1. Desrosiers R. Friderici K. Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc. Natl. Acad. Sci. USA 1974 71 10 3971 3975 10.1073/pnas.71.10.3971 4372599
    [Google Scholar]
  2. Yue Y. Liu J. He C. RNA N 6 -methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev. 2015 29 13 1343 1355 10.1101/gad.262766.115 26159994
    [Google Scholar]
  3. Molinie B. Wang J. Lim K.S. Hillebrand R. Lu Z. Van Wittenberghe N. Howard B.D. Daneshvar K. Mullen A.C. Dedon P. Xing Y. Giallourakis C.C. m6A-LAIC-seq reveals the census and complexity of the m6A epitranscriptome. Nat. Methods 2016 13 8 692 698 10.1038/nmeth.3898 27376769
    [Google Scholar]
  4. Meyer K.D. Patil D.P. Zhou J. Zinoviev A. Skabkin M.A. nlmo O. Pestova T.V. Qian S.B. Jaffrey S.R. 5′ UTR m6A promotes cap-independent translation. Cell 2015 163 4 999 1010 10.1016/j.cell.2015.10.012 26593424
    [Google Scholar]
  5. Wang X. Lu Z. Gomez A. Hon G.C. Yue Y. Han D. Fu Y. Parisien M. Dai Q. Jia G. Ren B. Pan T. He C. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 2014 505 7481 117 120 10.1038/nature12730 24284625
    [Google Scholar]
  6. Fustin J.M. Doi M. Yamaguchi Y. Hida H. Nishimura S. Yoshida M. Isagawa T. Morioka M.S. Kakeya H. Manabe I. Okamura H. RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell 2013 155 4 793 806 10.1016/j.cell.2013.10.026 24209618
    [Google Scholar]
  7. Wang X. Feng J. Xue Y. Guan Z. Zhang D. Liu Z. Gong Z. Wang Q. Huang J. Tang C. Zou T. Yin P. Structural basis of N6-adenosine methylation by the METTL3–METTL14 complex. Nature 2016 534 7608 575 578 10.1038/nature18298 27281194
    [Google Scholar]
  8. Tzafrir I. Pena-Muralla R. Dickerman A. Berg M. Rogers R. Hutchens S. Sweeney T.C. McElver J. Aux G. Patton D. Meinke D. Identification of genes required for embryo development in Arabidopsis. Plant Physiol. 2004 135 3 1206 1220 10.1104/pp.104.045179 15266054
    [Google Scholar]
  9. Zhong S. Li H. Bodi Z. Button J. Vespa L. Herzog M. Fray R.G. MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor. Plant Cell 2008 20 5 1278 1288 10.1105/tpc.108.058883 18505803
    [Google Scholar]
  10. Despres B. Delseny M. Devic M. Partial complementation of embryo defective mutations: A general strategy to elucidate gene function. Plant J. 2001 27 2 149 159 10.1046/j.1365‑313x.2001.01078.x 11489192
    [Google Scholar]
  11. Qian H. Lu N. Xue L. Liang X. Zhang X. Fu M. Xie Y. Zhan Q. Liu Z. Lin C. Reduced MTA1 expression by RNAi inhibits in vitro invasion and migration of esophageal squamous cell carcinoma cell line. Clin. Exp. Metastasis 2005 22 8 653 662 10.1007/s10585‑006‑9005‑2 16703414
    [Google Scholar]
  12. Hu J. Cai J. Park S.J. Lee K. Li Y. Chen Y. Yun J.Y. Xu T. Kang H. N6 ‐Methyladenosine mRNA methylation is important for salt stress tolerance in Arabidopsis. Plant J. 2021 106 6 1759 1775 10.1111/tpj.15270 33843075
    [Google Scholar]
  13. Wang X. Jiang B. Gu L. Chen Y. Mora M. Zhu M. Noory E. Wang Q. Lin C. A photoregulatory mechanism of the circadian clock in Arabidopsis. Nat. Plants 2021 7 10 1397 1408 10.1038/s41477‑021‑01002‑z 34650267
    [Google Scholar]
  14. Govindan G. Sharma B. Li Y.F. Armstrong C.D. Merum P. Rohila J.S. Gregory B.D. Sunkar R. mRNA N 6 ‐methyladenosine is critical for cold tolerance in Arabidopsis. Plant J. 2022 111 4 1052 1068 10.1111/tpj.15872 35710867
    [Google Scholar]
  15. Hou N. Li C. He J. Liu Y. Yu S. Malnoy M. Mobeen Tahir M. Xu L. Ma F. Guan Q. MdMTA‐mediated m 6 A modification enhances drought tolerance by promoting mRNA stability and translation efficiency of genes involved in lignin deposition and oxidative stress. New Phytol. 2022 234 4 1294 1314 10.1111/nph.18069 35246985
    [Google Scholar]
  16. Zhou L. Tang R. Li X. Tian S. Li B. Qin G. N6-methyladenosine RNA modification regulates strawberry fruit ripening in an ABA-dependent manner. Genome Biol. 2021 22 1 168 10.1186/s13059‑021‑02385‑0 34078442
    [Google Scholar]
  17. O’ Connor C.J. Laraia L. Spring D.R. Chemical genetics. Chem. Soc. Rev. 2011 40 8 4332 4345 10.1039/c1cs15053g 21562678
    [Google Scholar]
  18. Stockwell B.R. Frontiers in chemical genetics. Trends Biotechnol. 2000 18 11 449 455 10.1016/S0167‑7799(00)01499‑2 11058785
    [Google Scholar]
  19. Walsh D.P. Chang Y.T. Chemical genetics. Chem. Rev. 2006 106 6 2476 2530 10.1021/cr0404141 16771457
    [Google Scholar]
  20. Lei B. Song M. Li X. Dang X. Qin R. Zhu S. An X. Liu Q. Yao X. Nie Y. Ma C. SMART v1.0: A database for small molecules with functional implications in plants. Interdiscip. Sci. 2022 14 1 279 283 10.1007/s12539‑021‑00480‑1 34648133
    [Google Scholar]
  21. Spring D.R. Chemical genetics to chemical genomics: Small molecules offer big insights. Chem. Soc. Rev. 2005 34 6 472 482 10.1039/b312875j 16137160
    [Google Scholar]
  22. Stockwell B.R. Chemical genetics: ligand-based discovery of gene function. Nat. Rev. Genet. 2000 1 2 116 125 10.1038/35038557 11253651
    [Google Scholar]
  23. Tóth R. van der Hoorn R.A.L. Emerging principles in plant chemical genetics. Trends Plant Sci. 2010 15 2 81 88 10.1016/j.tplants.2009.11.005 20036182
    [Google Scholar]
  24. Dejonghe W. Russinova E. Plant chemical genetics: from phenotype-based screens to synthetic biology. Plant Physiol. 2017 174 1 5 20 10.1104/pp.16.01805 28275150
    [Google Scholar]
  25. McCourt P. Desveaux D. Plant chemical genetics. New Phytol. 2010 185 1 15 26 10.1111/j.1469‑8137.2009.03045.x 19825020
    [Google Scholar]
  26. Blackwell H.E. Zhao Y. Chemical genetic approaches to plant biology. Plant Physiol. 2003 133 2 448 455 10.1104/pp.103.031138 14555772
    [Google Scholar]
  27. Waadt R. Seller C.A. Hsu P.K. Takahashi Y. Munemasa S. Schroeder J.I. Plant hormone regulation of abiotic stress responses. Nat. Rev. Mol. Cell Biol. 2022 23 10 680 694 10.1038/s41580‑022‑00479‑6 35513717
    [Google Scholar]
  28. Hooper C.M. Castleden I.R. Tanz S.K. Aryamanesh N. Millar A.H. SUBA4: the interactive data analysis centre for Arabidopsis subcellular protein locations. Nucleic Acids Res. 2017 45 D1 D1064 D1074 10.1093/nar/gkw1041 27899614
    [Google Scholar]
  29. Klepikova A.V. Kasianov A.S. Gerasimov E.S. Logacheva M.D. Penin A.A. A high resolution map of the Arabidopsis thaliana developmental transcriptome based on RNA ‐seq profiling. Plant J. 2016 88 6 1058 1070 10.1111/tpj.13312 27549386
    [Google Scholar]
  30. Waese J. Fan J. Pasha A. Yu H. Fucile G. Shi R. Cumming M. Kelley L.A. Sternberg M.J. Krishnakumar V. Ferlanti E. Miller J. Town C. Stuerzlinger W. Provart N.J. ePlant: Visualizing and exploring multiple levels of data for hypothesis generation in plant biology. Plant Cell 2017 29 8 1806 1821 10.1105/tpc.17.00073 28808136
    [Google Scholar]
  31. Zhang H. Zhang F. Yu Y. Feng L. Jia J. Liu B. Li B. Guo H. Zhai J. A comprehensive online database for exploring ∼20,000 public Arabidopsis RNA-Seq Libraries. Mol. Plant 2020 13 9 1231 1233 10.1016/j.molp.2020.08.001 32768600
    [Google Scholar]
  32. Zhao Y. Li M.C. Konaté M.M. Chen L. Das B. Karlovich C. Williams P.M. Evrard Y.A. Doroshow J.H. McShane L.M. TPM, FPKM, or normalized counts? A comparative study of quantification measures for the analysis of RNA-seq data from the NCI patient-derived models repository. J. Transl. Med. 2021 19 1 269 10.1186/s12967‑021‑02936‑w 34158060
    [Google Scholar]
  33. Koch L. 1001 genomes and epigenomes. Nat. Rev. Genet. 2016 17 9 503 10.1038/nrg.2016.99 27452113
    [Google Scholar]
  34. Weigel D. Mott R. The 1001 genomes project for Arabidopsis thaliana. Genome Biol. 2009 10 5 107 10.1186/gb‑2009‑10‑5‑107 19519932
    [Google Scholar]
  35. Ng P.C. Henikoff S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003 31 13 3812 3814 10.1093/nar/gkg509 12824425
    [Google Scholar]
  36. Sim NL Kumar P Hu J Henikoff S Schneider G Ng PC SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 2012 40 W452 W457 10.1093/nar/gks539
    [Google Scholar]
  37. Mi H. Ebert D. Muruganujan A. Mills C. Albou L.P. Mushayamaha T. Thomas P.D. PANTHER version 16: A revised family classification, tree-based classification tool, enhancer regions and extensive API. Nucleic Acids Res. 2021 49 D1 D394 D403 10.1093/nar/gkaa1106 33290554
    [Google Scholar]
  38. Adzhubei I.A. Schmidt S. Peshkin L. Ramensky V.E. Gerasimova A. Bork P. Kondrashov A.S. Sunyaev S.R. A method and server for predicting damaging missense mutations. Nat. Methods 2010 7 4 248 249 10.1038/nmeth0410‑248 20354512
    [Google Scholar]
  39. Pejaver V. Urresti J. Lugo-Martinez J. Pagel K.A. Lin G.N. Nam H.J. Mort M. Cooper D.N. Sebat J. Iakoucheva L.M. Mooney S.D. Radivojac P. Inferring the molecular and phenotypic impact of amino acid variants with MutPred2. Nat. Commun. 2020 11 1 5918 10.1038/s41467‑020‑19669‑x 33219223
    [Google Scholar]
  40. Venselaar H. te Beek T.A.H. Kuipers R.K.P. Hekkelman M.L. Vriend G. Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinformatics 2010 11 1 548 10.1186/1471‑2105‑11‑548 21059217
    [Google Scholar]
  41. Vriend G. WHAT IF: A molecular modeling and drug design program. J. Mol. Graph. 1990 8 1 52 56, 29 10.1016/0263‑7855(90)80070‑V 2268628
    [Google Scholar]
  42. Capriotti E Fariselli P Casadio R. Predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res. 2005 33 W306 W310
    [Google Scholar]
  43. Rodrigues C.H.M. Pires D.E.V. Ascher D.B. DynaMut2 : Assessing changes in stability and flexibility upon single and multiple point missense mutations. Protein Sci. 2021 30 1 60 69 10.1002/pro.3942 32881105
    [Google Scholar]
  44. Zhou Y. Pan Q. Pires D.E.V. Rodrigues C.H.M. Ascher D.B. DDMut: Predicting effects of mutations on protein stability using deep learning. Nucleic Acids Res. 2023 51 W1 W122 W128 10.1093/nar/gkad472 37283042
    [Google Scholar]
  45. Jumper J. Evans R. Pritzel A. Green T. Figurnov M. Ronneberger O. Tunyasuvunakool K. Bates R. Žídek A. Potapenko A. Bridgland A. Meyer C. Kohl S.A.A. Ballard A.J. Cowie A. Romera-Paredes B. Nikolov S. Jain R. Adler J. Back T. Petersen S. Reiman D. Clancy E. Zielinski M. Steinegger M. Pacholska M. Berghammer T. Bodenstein S. Silver D. Vinyals O. Senior A.W. Kavukcuoglu K. Kohli P. Hassabis D. Highly accurate protein structure prediction with alphafold. Nature 2021 596 7873 583 589 10.1038/s41586‑021‑03819‑2 34265844
    [Google Scholar]
  46. Wiederstein M. Sippl M.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007 35 Suppl. 2 W407 W410 10.1093/nar/gkm290 17517781
    [Google Scholar]
  47. Tian W. Chen C. Lei X. Zhao J. Liang J. CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Res. 2018 46 W1 W363 W367 10.1093/nar/gky473 29860391
    [Google Scholar]
  48. DeLano W.L. Lam J.W. PyMOL: A communications tool for computational models. Abstr Pap Am Chem Soc. 2005 230 U1371 U1372
    [Google Scholar]
  49. Sorokina M. Merseburger P. Rajan K. Yirik M.A. Steinbeck C. COCONUT online: Collection of Open Natural Products database. J. Cheminform. 2021 13 1 2 10.1186/s13321‑020‑00478‑9 33423696
    [Google Scholar]
  50. Yoshikawa N. Hutchison G.R. Fast, efficient fragment-based coordinate generation for Open Babel. J. Cheminform. 2019 11 1 49 10.1186/s13321‑019‑0372‑5 31372768
    [Google Scholar]
  51. O’Boyle N.M. Banck M. James C.A. Morley C. Vandermeersch T. Hutchison G.R. Open Babel: An open chemical toolbox. J. Cheminform. 2011 3 1 33 10.1186/1758‑2946‑3‑33 21982300
    [Google Scholar]
  52. Jones G. Willett P. Glen R.C. Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J. Mol. Biol. 1995 245 1 43 53 10.1016/S0022‑2836(95)80037‑9 7823319
    [Google Scholar]
  53. Jones G. Willett P. Glen R.C. Leach A.R. Taylor R. Development and validation of a genetic algorithm for flexible docking 1 1Edited by F. E. Cohen. J. Mol. Biol. 1997 267 3 727 748 10.1006/jmbi.1996.0897 9126849
    [Google Scholar]
  54. Verdonk M.L. Cole J.C. Hartshorn M.J. Murray C.W. Taylor R.D. Improved protein–ligand docking using GOLD. Proteins 2003 52 4 609 623 10.1002/prot.10465 12910460
    [Google Scholar]
  55. Lovell S.C. Word J.M. Richardson J.S. Richardson D.C. The penultimate rotamer library. Proteins 2000 40 3 389 408 10.1002/1097‑0134(20000815)40:3<389::AID‑PROT50>3.0.CO;2‑2 10861930
    [Google Scholar]
  56. Salomon-Ferrer R. Case D.A. Walker R.C. An overview of the Amber biomolecular simulation package. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2013 3 2 198 210 10.1002/wcms.1121
    [Google Scholar]
  57. Case D.A. Cheatham T.E. III Darden T. Gohlke H. Luo R. Merz K.M. Jr Onufriev A. Simmerling C. Wang B. Woods R.J. The Amber biomolecular simulation programs. J. Comput. Chem. 2005 26 16 1668 1688 10.1002/jcc.20290 16200636
    [Google Scholar]
  58. Maier J.A. Martinez C. Kasavajhala K. Wickstrom L. Hauser K.E. Simmerling C. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 2015 11 8 3696 3713 10.1021/acs.jctc.5b00255 26574453
    [Google Scholar]
  59. Frisch A. 2009
  60. Darden T. York D. Pedersen L. Particle mesh Ewald: An N ⋅log( N ) method for ewald sums in large systems. J. Chem. Phys. 1993 98 12 10089 10092 10.1063/1.464397
    [Google Scholar]
  61. Miller B.R. III McGee T.D. Jr Swails J.M. Homeyer N. Gohlke H. Roitberg A.E. MMPBSA.py : An efficient program for end-state free energy calculations. J. Chem. Theory Comput. 2012 8 9 3314 3321 10.1021/ct300418h 26605738
    [Google Scholar]
  62. Larkin M.A. Blackshields G. Brown N.P. Chenna R. McGettigan P.A. McWilliam H. Valentin F. Wallace I.M. Wilm A. Lopez R. Thompson J.D. Gibson T.J. Higgins D.G. Clustal W and clustal X version 2.0. Bioinformatics 2007 23 21 2947 2948 10.1093/bioinformatics/btm404 17846036
    [Google Scholar]
  63. Thompson J. Gibson T.J. Plewniak F. Jeanmougin F. Higgins D.G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997 25 24 4876 4882 10.1093/nar/25.24.4876 9396791
    [Google Scholar]
  64. Robert X Gouet P Deciphering key features in protein structures with the new endscript server. Nucleic Acids Res. 2014 42 W320 W324 10.1093/nar/gku316
    [Google Scholar]
  65. Huong T.T. Ngoc L.N.T. Kang H. Functional characterization of a putative RNA demethylase ALKBH6 in Arabidopsis growth and abiotic stress responses. Int. J. Mol. Sci. 2020 21 18 6707 10.3390/ijms21186707 32933187
    [Google Scholar]
  66. Wang J. Chitsaz F. Derbyshire M.K. Gonzales N.R. Gwadz M. Lu S. Marchler G.H. Song J.S. Thanki N. Yamashita R.A. Yang M. Zhang D. Zheng C. Lanczycki C.J. Marchler-Bauer A. The conserved domain database in 2023. Nucleic Acids Res. 2023 51 D1 D384 D388 10.1093/nar/gkac1096 36477806
    [Google Scholar]
  67. Winter D. Vinegar B. Nahal H. Ammar R. Wilson G.V. Provart N.J. An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS One 2007 2 8 e718 10.1371/journal.pone.0000718 17684564
    [Google Scholar]
  68. Wang S. Wang H. Xu Z. Jiang S. Shi Y. Xie H. Wang S. Hua J. Wu Y. m6A mRNA modification promotes chilling tolerance and modulates gene translation efficiency in Arabidopsis. Plant Physiol. 2023 192 2 1466 1482 10.1093/plphys/kiad112 36810961
    [Google Scholar]
  69. Vaser R. Adusumalli S. Leng S.N. Sikic M. Ng P.C. SIFT missense predictions for genomes. Nat. Protoc. 2016 11 1 1 9 10.1038/nprot.2015.123 26633127
    [Google Scholar]
  70. Yankova E. Blackaby W. Albertella M. Rak J. De Braekeleer E. Tsagkogeorga G. Pilka E.S. Aspris D. Leggate D. Hendrick A.G. Webster N.A. Andrews B. Fosbeary R. Guest P. Irigoyen N. Eleftheriou M. Gozdecka M. Dias J.M.L. Bannister A.J. Vick B. Jeremias I. Vassiliou G.S. Rausch O. Tzelepis K. Kouzarides T. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature 2021 593 7860 597 601 10.1038/s41586‑021‑03536‑w 33902106
    [Google Scholar]
  71. Du Y. Yuan Y. Xu L. Zhao F. Wang W. Xu Y. Tian X. Discovery of METTL3 small molecule inhibitors by virtual screening of natural products. Front. Pharmacol. 2022 13 878135 10.3389/fphar.2022.878135 35571106
    [Google Scholar]
  72. Dolbois A. Bedi R.K. Bochenkova E. Müller A. Moroz-Omori E.V. Huang D. Caflisch A. 1,4,9-Triazaspiro[5.5]undecan-2-one derivatives as potent and selective METTL3 inhibitors. J. Med. Chem. 2021 64 17 12738 12760 10.1021/acs.jmedchem.1c00773 34431664
    [Google Scholar]
  73. Ballicora M.A. Iglesias A.A. Preiss J. ADP-glucose pyrophosphorylase, a regulatory enzyme for bacterial glycogen synthesis. Microbiol. Mol. Biol. Rev. 2003 67 2 213 225 10.1128/MMBR.67.2.213‑225.2003 12794190
    [Google Scholar]
  74. Ueland P.M. Pharmacological and biochemical aspects of S-adenosylhomocysteine and S-adenosylhomocysteine hydrolase. Pharmacol. Rev. 1982 34 3 223 253 6760211
    [Google Scholar]
  75. Talukdar A. Mukherjee A. Bhattacharya D. Fascinating transformation of SAM-competitive protein methyltransferase inhibitors from nucleoside analogues to non-nucleoside analogues. J. Med. Chem. 2022 65 3 1662 1684 10.1021/acs.jmedchem.1c01208 35014841
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936324036241016070320
Loading
/content/journals/cbio/10.2174/0115748936324036241016070320
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: m6A modification ; Chemical regulator ; MTA ; virtual screening ; m6A writer ; embryo-defective gene
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test