Skip to content
2000
image of A Low Transformed Tubal Rank Tensor Model Using a Spatial-Tubal Constraint for Sample Clustering with Cancer Multi-omics Data

Abstract

Background

Since each dimension of a tensor can store different types of genomics data, compared to matrix methods, utilizing tensor structure can provide a deeper understanding of multi-dimensional data while also facilitating the discovery of more useful information related to cancer. However, in reality, there are issues such as insufficient utilization of prior knowledge in multi-omics data and limitations in the recovery of low-tubal-rank tensors. Therefore, the method proposed in this article was developed.

Objectiv

In this paper, we proposed a low transformed tubal rank tensor model (LTTRT) using a spatial-tubal constraint to accurately partition different types of cancer samples and provide reliable theoretical support for the identification, diagnosis, and treatment of cancer.

Method

In the LTTRT method, the transformed tensor nuclear norm based on the transformed tensor singular value decomposition is characterized by the low-rank tensor, which can explore the global low-rank property of the tensor, resolving the challenge of the tensor nuclear norm-based method not achieving the lowest tubal rank. Additionally, the introduction of weighted total variation regularization is conducive to extracting more information from sequencing data in both spatial and tubal dimensions, exploring cross-correlation features of multiple genomic data, and addressing the problem of overlooking prior knowledge from various perspectives. In addition, the L-norm is used to improve sparsity. A symmetric Gauss‒Seidel-based alternating direction method of multipliers (sGS-ADMM) is used to update the LTTRT model iteratively.

Results

The experiments of sample clustering on multiple integrated cancer multi-omics datasets show that the proposed LTTRT method is better than existing methods. Experimental results validate the effectiveness of LTTRT in accurately partitioning different types of cancer samples.

Conclusion

The LTTRT method achieves precise segmentation of different types of cancer samples.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936319920241001024239
2024-10-21
2024-11-26
Loading full text...

Full text loading...

References

  1. Karimi-Maleh H. Karimi F. Fu L. Sanati A. L. Alizadeh M. Karaman C. Orooji Y. Cyanazine herbicide monitoring as a hazardous substance by a DNA nanostructure biosensor. J. Hazard. Mater. 2022 423 127058 10.1016/j.jhazmat.2021.127058
    [Google Scholar]
  2. Jung I. Kim M. Rhee S. Lim S. Kim S. MONTI: A multi-omics non-negative tensor decomposition framework for gene-Level integrative analysis. Front. Genet. 2021 12 1 14
    [Google Scholar]
  3. Wang M. Wang Q. Hong D. Roy S.K. Chanussot J. Learning tensor low-rank representation for hyperspectral anomaly detection. IEEE Trans. Cybern. 2022 1 13 35609106
    [Google Scholar]
  4. Zheng Y.B. Huang T.Z. Zhao X.L. Jiang T.X. Ma T.H. Ji T.Y. Mixed noise removal in hyperspectral image via low-fibered-rank regularization. IEEE Trans. Geosci. Remote Sens. 2020 58 1 734 749 10.1109/TGRS.2019.2940534
    [Google Scholar]
  5. Cao W. Wang Y. Sun J. Meng D. Yang C. Cichocki A. Xu Z. Total variation regularized tensor RPCA for background subtraction from compressive measurements. IEEE Trans. Image Process. 2016 25 9 4075 4090 10.1109/TIP.2016.2579262 27305675
    [Google Scholar]
  6. Li Z. Wang Y. Zhao Q. Zhang S. Meng D. A tensor-based online RPCA model for compressive background subtraction. IEEE Trans. Neural Netw. Learn. Syst. 2022 34 12 10668 10682
    [Google Scholar]
  7. Xie M. Liu X. Yang X. A nonlocal self-similarity-based weighted tensor low-rank decomposition for multichannel image completion with mixture noise. IEEE Trans. Neural Netw. Learn. Syst. 2024 35 1 73 87 10.1109/TNNLS.2022.3172184
    [Google Scholar]
  8. Bengua J.A. Phien H.N. Tuan H.D. Do M.N. Efficient tensor completion for color image and video recovery: Low-rank tensor train. IEEE Trans. Image Process. 2017 26 5 2466 2479 10.1109/TIP.2017.2672439 28237929
    [Google Scholar]
  9. Yang J.-H. Chen C. Dai H.-N. Ding M. Wu Z.-B. Zheng Z. Robust corrupted data recovery and clustering via generalized transformed tensor low-rank representation. IEEE Trans. Neural Netw. Learn. Syst. 2022 35 7 8839 8853
    [Google Scholar]
  10. Peng H. Hu Y. Chen J. Wang H. Li Y. Cai H. Integrating tensor similarity to enhance clustering performance. IEEE Trans. Pattern Anal. Mach. Intell. 2022 44 5 2582 2593 10.1109/TPAMI.2020.3040306 33232225
    [Google Scholar]
  11. Huang J. Zhang F. Safaei B. Qin Z. Chu F. The flexible tensor singular value decomposition and its applications in multisensor signal fusion processing. Mech. Syst. Signal Process. 2024 220 111662 10.1016/j.ymssp.2024.111662
    [Google Scholar]
  12. Xu H. Wang X. Huang J. Zhang F. Chu F. Semi-supervised multi-sensor information fusion tailored graph embedded low-rank tensor learning machine under extremely low labeled rate. Inf. Fusion 2024 105 102222 10.1016/j.inffus.2023.102222
    [Google Scholar]
  13. Hu Y. Liu J.X. Gao Y.L. Shang J. DSTPCA: Double-sparse constrained tensor principal component analysis method for feature selection. IEEE/ACM Trans. Comput. Biol. Bioinformatics 2021 18 4 1481 1491 10.1109/TCBB.2019.2943459 31562100
    [Google Scholar]
  14. Liu P. Luo J. Chen X. miRCom: Tensor completion integrating multi-view information to deduce the potential disease-related miRNA-miRNA pairs. IEEE/ACM Trans. Comput. Biol. Bioinformatics 2022 19 3 1747 1759 10.1109/TCBB.2020.3037331 33180730
    [Google Scholar]
  15. Luo J. Liu Y. Liu P. Lai Z. Wu H. Data integration using tensor decomposition for the prediction of miRNA-disease associations. IEEE J. Biomed. Health Inform. 2022 26 5 2370 2378 10.1109/JBHI.2021.3125573 34748505
    [Google Scholar]
  16. Liu Y. Shang F. Jiao L. Cheng J. Cheng H. Trace norm regularized CANDECOMP/PARAFAC decomposition with missing data. IEEE Trans. Cybern. 2015 45 11 2437 2448 10.1109/TCYB.2014.2374695 26470059
    [Google Scholar]
  17. Liu J. Musialski P. Wonka P. Ye J. Tensor completion for estimating missing values in visual data. IEEE Trans. Pattern Anal. Mach. Intell. 2013 35 1 208 220 10.1109/TPAMI.2012.39 22271823
    [Google Scholar]
  18. Jiang T.-X. Huang T.-Z. Zhao X.-L. Deng L.-J. Multi-dimensional imaging data recovery via minimizing the partial sum of tubal nuclear norm. J. Comput. Appl. Math 2020 372 112680 10.1016/j.cam.2019.112680
    [Google Scholar]
  19. Han Z.F. Leung C.S. Huang L.T. So H.C. Sparse and truncated nuclear norm based tensor completion. Neural Process. Lett. 2017 45 3 729 743 10.1007/s11063‑016‑9503‑4
    [Google Scholar]
  20. Lu C. Feng J. Chen Y. Liu W. Lin Z. Yan S. Tensor robust principal component analysis: exact recovery of corrupted low-rank tensors via convex optimization. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27-30 June 2016 pp. 5249-5257. 10.1109/CVPR.2016.567
    [Google Scholar]
  21. Hu Y. Liu J.X. Gao Y.L. Li S.J. Wang J. Differentially expressed genes extracted by the tensor robust principal component analysis (TRPCA) method. Complexity 2019 2019 1 6136245 10.1155/2019/6136245
    [Google Scholar]
  22. Lu C. Feng J. Chen Y. Liu W. Lin Z. Yan S. Tensor robust principal component analysis with a new tensor nuclear norm. IEEE Trans. Pattern Anal. Mach. Intell. 2020 42 4 925 938 10.1109/TPAMI.2019.2891760 30629495
    [Google Scholar]
  23. Guo J. Sun Y. Gao J. Hu Y. Yin B. Logarithmic Schatten-p norm minimization for tensorial multi-view subspace clustering. IEEE Trans. Pattern Anal. Mach. Intell. 2023 45 3 3396 3410 35648873
    [Google Scholar]
  24. Sun S. Liu J. Chen X. Li W. Li H. Hyperspectral anomaly detection with tensor average rank and piecewise smoothness constraints. IEEE Trans. Neural Netw. Learn. Syst. 2023 34 11 8679 8692 10.1109/TNNLS.2022.3152252 35245203
    [Google Scholar]
  25. Zhang X. Ng M.K. Low rank tensor completion with poisson observations. IEEE Trans. Pattern Anal. Mach. Intell. 2022 44 8 4239 4251 33587697
    [Google Scholar]
  26. Oh T.H. Tai Y.W. Bazin J.C. Kim H. Kweon I.S. Partial sum minimization of singular values in robust PCA: Algorithm and applications. IEEE Trans. Pattern Anal. Mach. Intell. 2016 38 4 744 758 10.1109/TPAMI.2015.2465956 26353362
    [Google Scholar]
  27. Chen L. Jiang X. Liu X. Zhou Z. Logarithmic norm regularized low-rank factorization for matrix and tensor completion. IEEE Trans. Image Process. 2021 30 3434 3449 10.1109/TIP.2021.3061908 33651693
    [Google Scholar]
  28. Song G. Ng M.K. Zhang X. Robust tensor completion using transformed tensor singular value decomposition. Numer. Linear Algebra Appl. 2020 27 3 e2299 10.1002/nla.2299
    [Google Scholar]
  29. Ng M.K. Zhang X. Zhao X-L. Patched-tube unitary transform for robust tensor completion. Pattern Recognit 2020 100 107181
    [Google Scholar]
  30. Qiu D. Bai M. Ng M.K. Zhang X. Nonlocal robust tensor recovery with nonconvex regularization *. Inverse Probl. 2021 37 3 035001 10.1088/1361‑6420/abd85b
    [Google Scholar]
  31. Wang M. Wang Q. Chanussot J. Tensor low-rank constraint and $l_0$ total variation for hyperspectral image mixed noise removal. IEEE J. Sel. Top. Signal Process. 2021 15 3 718 733 10.1109/JSTSP.2021.3058503
    [Google Scholar]
  32. Chen L. Sun D. Toh K.C. An efficient inexact symmetric Gauss–Seidel based majorized ADMM for high-dimensional convex composite conic programming. Math. Program. 2017 161 1-2 237 270 10.1007/s10107‑016‑1007‑5
    [Google Scholar]
  33. Li X. Sun D. Toh K.C. A Schur complement based semi-proximal ADMM for convex quadratic conic programming and extensions. Math. Program. 2016 155 1-2 333 373 10.1007/s10107‑014‑0850‑5
    [Google Scholar]
  34. Ng M. K. Iterative methods for Toeplitz systems Oxford Academic 2004 10.1093/oso/9780198504207.001.0001
    [Google Scholar]
  35. Rockafellar R.T. Wets R.J-B. Variational Analysis. Springer Sci. & Bus. Media 2009
    [Google Scholar]
  36. Tan R.S.Y.C. Ong W.S. Lee K.H. Lim A.H. Park S. Park Y.H. Lin C.H. Lu Y.S. Ono M. Ueno T. Naito Y. Onishi T. Lim G.H. Tan S.M. Lee H.B. Ryu H.S. Han W. Tan V.K.M. Wong F.Y. Im S.A. Tan P.H. Chan J.Y. Yap Y.S. HER2 expression, copy number variation and survival outcomes in HER2-low non-metastatic breast cancer: An international multicentre cohort study and TCGA-METABRIC analysis. BMC Med. 2022 20 1 105 10.1186/s12916‑022‑02284‑6 35296300
    [Google Scholar]
  37. Zhou P. Feng J. Outlier-robust tensor PCA. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21-26 July 2017, pp. 3938-3946.
    [Google Scholar]
  38. Liu Y. Chen L. Zhu C. Improved robust tensor principal component analysis via low-rank core matrix. IEEE J. Sel. Top. Signal Process. 2018 12 6 1378 1389 10.1109/JSTSP.2018.2873142
    [Google Scholar]
  39. Qiao Q. Gao Y.-L. Yuan S.-S. Liu J.-X. Robust tensor method based on correntropy and tensor singular value decomposition for cancer genomics data. 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Houston, TX, USA, 09-12 December 2021, pp. 509-514. 10.1109/BIBM52615.2021.9669785
    [Google Scholar]
  40. Zheng R. Li M. Liang Z. Wu F.X. Pan Y. Wang J. SinNLRR: A robust subspace clustering method for cell type detection by non-negative and low-rank representation. Bioinformatics 2019 35 19 3642 3650 10.1093/bioinformatics/btz139 30821315
    [Google Scholar]
  41. Lovász L. Plummer M. D. Matching theory Elsevier 2009 10.1090/chel/367
    [Google Scholar]
  42. Wang Y. Peng J. Zhao Q. Leung Y. Zhao X.L. Meng D. Hyperspectral image restoration via total variation regularized low-rank tensor decomposition. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018 11 4 1227 1243 10.1109/JSTARS.2017.2779539
    [Google Scholar]
  43. Kanungo T. Mount D.M. Netanyahu N.S. Piatko C.D. Silverman R. Wu A.Y. An efficient k-means clustering algorithm: Analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 2002 24 7 881 892 10.1109/TPAMI.2002.1017616
    [Google Scholar]
  44. Lees J. Chan A. Polypharmacy in elderly patients with cancer: Clinical implications and management. Lancet Oncol. 2011 12 13 1249 1257 10.1016/S1470‑2045(11)70040‑7 21741307
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936319920241001024239
Loading
/content/journals/cbio/10.2174/0115748936319920241001024239
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test