Skip to content
2000
image of NEXT-GEN Medicine: Designing Drugs to Fit Patient Profiles

Abstract

: Personalized medicine, with its focus on tailoring drug formulations to individual patient profiles, has made significant strides in healthcare. The integration of genomics, biomarkers, nanotechnology, 3D printing, and real-time monitoring provides a comprehensive approach to optimizing drug therapies on an individual basis. This review aims to highlight the recent advancements in personalized medicine and its applications in various diseases, such as cancer, cardiovascular diseases, diabetes mellitus, and neurodegenerative diseases. The review explores the integration of multiple technologies in the field of personalized medicine, including genomics, biomarkers, nanotechnology, 3D printing, and real-time monitoring. As these technologies continue to evolve, we are entering an era of truly personalized medicine that promises improved treatment outcomes, reduced adverse effects, and a more patient-centric approach to healthcare. The advancements in personalized medicine hold great promise for improving patient outcomes and reducing adverse effects, heralding a new era in patient-centric healthcare.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936316656240830080555
2024-10-17
2025-05-26
Loading full text...

Full text loading...

References

  1. Ho D. Quake S.R. McCabe E.R.B. Chng W.J. Chow E.K. Ding X. Gelb B.D. Ginsburg G.S. Hassenstab J. Ho C.M. Mobley W.C. Nolan G.P. Rosen S.T. Tan P. Yen Y. Zarrinpar A. Enabling technologies for personalized and precision medicine. Trends Biotechnol. 2020 38 5 497 518 10.1016/j.tibtech.2019.12.021 31980301
    [Google Scholar]
  2. Radhakrishnan A. Kuppusamy G. Ponnusankar S. Shanmukhan N.K. Pharmacogenomic phase transition from personalized medicine to patient-centric customized delivery. Pharmacogenomics J. 2020 20 1 1 18 10.1038/s41397‑019‑0135‑8 31819163
    [Google Scholar]
  3. Akhoon N. Precision medicine: A new paradigm in therapeutics. Int. J. Prev. Med. 2021 12 1 12 10.4103/ijpvm.IJPVM_375_19 34084309
    [Google Scholar]
  4. Weinshilboum R.M. Wang L. Precision medicine: A new paradigm in therapeutics. Mayo Clin Proc. 201721 92 11 1711 1722 10.1016/j.mayocp.2017.09.001
    [Google Scholar]
  5. Hasanzad M. Principles of Pharmacogenomics and Pharmacogenetics. Precision Medicine in Clinical Practice. Hasanzad M. Singapore Springer Nature Singapore 2022 13 32 10.1007/978‑981‑19‑5082‑7_2
    [Google Scholar]
  6. Hasanzad M. Sarhangi N. Naghavi A. Ghavimehr E. Khatami F. Ehsani Chimeh S. Larijani B. Aghaei Meybodi H.R. Genomic medicine on the frontier of precision medicine. J. Diabetes Metab. Disord. 2021 21 1 853 861 10.1007/s40200‑021‑00880‑6 35673457
    [Google Scholar]
  7. Hippman C. Nislow C. Pharmacogenomic testing: Clinical evidence and implementation challenges. J. Pers. Med. 2019 9 3 40 10.3390/jpm9030040 31394823
    [Google Scholar]
  8. Kohno T. Kato M. Kohsaka S. Sudo T. Tamai I. Shiraishi Y. Okuma Y. Ogasawara D. Suzuki T. Yoshida T. Mano H. C-CAT: The National Datacenter for Cancer Genomic Medicine in Japan. Cancer Discov. 2022 12 11 2509 2515 10.1158/2159‑8290.CD‑22‑0417 36321305
    [Google Scholar]
  9. Serelli-Lee V. Ito K. Koibuchi A. Tanigawa T. Ueno T. Matsushima N. Imai Y. A state-of-the-art roadmap for biomarker-driven drug development in the era of personalized therapies. J. Pers. Med. 2022 12 5 669 10.3390/jpm12050669 35629092
    [Google Scholar]
  10. Sardu M.L. Poggesi I. De Nicolao G. Biomarker- versus drug-driven tumor growth inhibition models: An equivalence analysis. J. Pharmacokinet. Pharmacodyn. 2015 42 6 611 626 10.1007/s10928‑015‑9427‑z 26209955
    [Google Scholar]
  11. Bischoff P. Outcome of first-line treatment with pembrolizumab according to KRAS/TP53 mutational status for nonsquamous programmed death-ligand 1-high (≥50%) NSCLC in the german national network genomic medicine lung cancer J Thorac Oncol 2024 192 5 803 817
    [Google Scholar]
  12. Özenver N. Efferth T. Identification of prognostic and predictive biomarkers and druggable targets among 205 antioxidant genes in 21 different tumor types via data-mining. Pharmaceutics 2023 15 2 427 10.3390/pharmaceutics15020427 36839749
    [Google Scholar]
  13. Sahu T. Ratre Y.K. Chauhan S. Bhaskar L.V.K.S. Nair M.P. Verma H.K. Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science. J. Drug Deliv. Sci. Technol. 2021 63 102487 10.1016/j.jddst.2021.102487
    [Google Scholar]
  14. De Matteis L. Martín-Rapún R. de la Fuente J.M. Nanotechnology in personalized medicine: A promising tool for alzheimer’s disease treatment. Curr. Med. Chem. 2018 25 35 4602 4615 10.2174/0929867324666171012112026 29022501
    [Google Scholar]
  15. Alghamdi M.A. Fallica A.N. Virzì N. Kesharwani P. Pittalà V. Greish K. The promise of nanotechnology in personalized medicine. J. Pers. Med. 2022 12 5 673 10.3390/jpm12050673 35629095
    [Google Scholar]
  16. Képes Z. Arató V. Szabó J.P. Gyuricza B. Szücs D. Hajdu I. Fekete A. Bruchertseifer F. Szikra D. Trencsényi G. Therapeutic performance evaluation of 213bi-labelled Aminopeptidase N (APN/CD13)-affine NGR-Motif ([213Bi]Bi-DOTAGA-cKNGRE) in experimental tumour model: A treasured tailor for oncology. Pharmaceutics 2023 15 2 491 10.3390/pharmaceutics15020491 36839813
    [Google Scholar]
  17. Lepowsky E. Tasoglu S. 3D printing for drug manufacturing: A perspective on the future of pharmaceuticals. Int J Bioprint. 2018 4 1 119
    [Google Scholar]
  18. Lam E.H.Y. Yu F. Zhu S. Wang Z. 3D bioprinting for next-generation personalized medicine. Int. J. Mol. Sci. 2023 24 7 6357 10.3390/ijms24076357 37047328
    [Google Scholar]
  19. Parulski C. Bya L.A. Goebel J. Servais A.C. Lechanteur A. Evrard B. Development of 3D printed mini-waffle shapes containing hydrocortisone for children’s personalized medicine. Int. J. Pharm. 2023 642 123131 10.1016/j.ijpharm.2023.123131 37321464
    [Google Scholar]
  20. Maguire R. McCann L. Kotronoulas G. Kearney N. Ream E. Armes J. Patiraki E. Furlong E. Fox P. Gaiger A. McCrone P. Berg G. Miaskowski C. Cardone A. Orr D. Flowerday A. Katsaragakis S. Darley A. Lubowitzki S. Harris J. Skene S. Miller M. Moore M. Lewis L. DeSouza N. Donnan P.T. Real time remote symptom monitoring during chemotherapy for cancer: European multicentre randomised controlled trial (eSMART). BMJ 2021 374 n1647 10.1136/bmj.n1647 34289996
    [Google Scholar]
  21. Guk K. Han G. Lim J. Jeong K. Kang T. Lim E.K. Jung J. Evolution of wearable devices with real-time disease monitoring for personalized healthcare. Nanomaterials (Basel) 2019 9 6 813 10.3390/nano9060813 31146479
    [Google Scholar]
  22. Tyler J. Choi S.W. Tewari M. Real-time, personalized medicine through wearable sensors and dynamic predictive modeling: A new paradigm for clinical medicine. Curr. Opin. Syst. Biol. 2020 20 17 25 10.1016/j.coisb.2020.07.001 32984661
    [Google Scholar]
  23. Huang X. Zhou Y. Tang H. Liu B. Su B. Wang Q. Differential metabolic network construction for personalized medicine: Study of type 2 diabetes mellitus patients’ response to gliclazide-modified-release-treated. J. Biomed. Inform. 2021 118 103796 10.1016/j.jbi.2021.103796 33932596
    [Google Scholar]
  24. El-Gendy D.M. Mohamed M.A. Amirghasemi F. Atty S.A. Abd El-Rahman M.K. Mousavi M.P.S. From aluminum foil to personalized medicine: Ecofriendly one-step electrode modification for rapid detection of ertapenem and co-administered medications. J. Sci. Adv. Mater. Devices 2023 8 3 100601 10.1016/j.jsamd.2023.100601
    [Google Scholar]
  25. Wang J.F. Zhang T.L. Fu B.J. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016 67 250 256 10.1016/j.ecolind.2016.02.052
    [Google Scholar]
  26. Wesseling H. Tau PTM profiles identify patient heterogeneity and stages of alzheimer's disease. Cell 2020 183 6 1699 1713.e13 10.1016/j.cell.2020.10.029
    [Google Scholar]
  27. Turashvili G. Brogi E. Tumor heterogeneity in breast cancer. Front. Med. (Lausanne) 2017 4 227 10.3389/fmed.2017.00227 29276709
    [Google Scholar]
  28. Kent D.M. Steyerberg E. van Klaveren D. Personalized evidence based medicine: Predictive approaches to heterogeneous treatment effects. BMJ 2018 363 k4245 10.1136/bmj.k4245 30530757
    [Google Scholar]
  29. Neeland I.J. Poirier P. Després J.P. Cardiovascular and metabolic heterogeneity of obesity: Clinical challenges and implications for management. Circulation 2018 137 13 1391 1406 10.1161/CIRCULATIONAHA.117.029617 29581366
    [Google Scholar]
  30. Schernthaner G. Schernthaner-Reiter M.H. Diabetes in the older patient: Heterogeneity requires individualisation of therapeutic strategies. Diabetologia 2018 61 7 1503 1516 10.1007/s00125‑018‑4547‑9 29417185
    [Google Scholar]
  31. Rubio-Perez C. Guney E. Aguilar D. Piñero J. Garcia-Garcia J. Iadarola B. Sanz F. Fernandez-Fuentes N. Furlong L.I. Oliva B. Genetic and functional characterization of disease associations explains comorbidity. Sci. Rep. 2017 7 1 6207 10.1038/s41598‑017‑04939‑4 28740175
    [Google Scholar]
  32. Ryan J. Fransquet P. Wrigglesworth J. Lacaze P. Phenotypic heterogeneity in dementia: A challenge for epidemiology and biomarker studies. Front. Public Health 2018 6 181 10.3389/fpubh.2018.00181 29971228
    [Google Scholar]
  33. Deliu M. Yavuz T.S. Sperrin M. Belgrave D. Sahiner U.M. Sackesen C. Kalayci O. Custovic A. Features of asthma which provide meaningful insights for understanding the disease heterogeneity. Clin. Exp. Allergy 2018 48 1 39 47 10.1111/cea.13014 28833810
    [Google Scholar]
  34. van Hamburg J.P. Tas S.W. Molecular mechanisms underpinning T helper 17 cell heterogeneity and functions in rheumatoid arthritis. J. Autoimmun. 2018 87 69 81 10.1016/j.jaut.2017.12.006 29254845
    [Google Scholar]
  35. Ghasemi M. Nabipour I. Omrani A. Alipour Z. Assadi M. Precision medicine and molecular imaging: New targeted approaches toward cancer therapeutic and diagnosis. Am. J. Nucl. Med. Mol. Imaging 2016 6 6 310 327 28078184
    [Google Scholar]
  36. Krzyszczyk P. The growing role of precision and personalized medicine for cancer treatment. Technology 2018 06 03n04 79 100 10.1142/S2339547818300020
    [Google Scholar]
  37. Gambardella V. Tarazona N. Cejalvo J.M. Lombardi P. Huerta M. Roselló S. Fleitas T. Roda D. Cervantes A. Personalized medicine: Recent progress in cancer therapy. Cancers (Basel) 2020 12 4 1009 10.3390/cancers12041009 32325878
    [Google Scholar]
  38. Gao M. Harper M.M. Lin M. Qasem S.A. Patel R.A. Mardini S.H. Gabr M.M. Cavnar M.J. Pandalai P.K. Kim J. development of a single-cell technique to increase yield and use of gastrointestinal cancer organoids for personalized medicine application. J. Am. Coll. Surg. 2021 232 4 504 514 10.1016/j.jamcollsurg.2020.11.009 33253861
    [Google Scholar]
  39. Wahbi W. Korelin K. Sieviläinen M. Karihtala P. Wilkman T. Tarkkanen J. Salo T. Al-Samadi A. Evaluation of in vitro and in vivo personalized cancer treatment assays for oral squamous cell carcinoma. Transl. Oncol. 2023 33 101677 10.1016/j.tranon.2023.101677 37099957
    [Google Scholar]
  40. Hung S.I. Chu M.T. Hou M.M. Lee Y.S. Yang C.K. Chu S.Y. Liu F.Y. Hsu H.C. Pao S.C. Teng Y.C. Chen C.B. Chao A. Chung W.H. Chang J.W.C. Lai C.H. Personalized neoantigen-based T cell therapy triggers cytotoxic lymphocytes expressing polyclonal TCR against metastatic ovarian cancer. Biomed. Pharmacother. 2023 169 115928 10.1016/j.biopha.2023.115928 38011788
    [Google Scholar]
  41. Tada H. Fujino N. Nomura A. Nakanishi C. Hayashi K. Takamura M. Kawashiri M. Personalized medicine for cardiovascular diseases. J. Hum. Genet. 2021 66 1 67 74 10.1038/s10038‑020‑0818‑7 32772049
    [Google Scholar]
  42. Furkel J. Knoll M. Din S. Bogert N.V. Seeger T. Frey N. Abdollahi A. Katus H.A. Konstandin M.H. C-MORE: A high-content single-cell morphology recognition methodology for liquid biopsies toward personalized cardiovascular medicine. Cell Rep. Med. 2021 2 11 100436 10.1016/j.xcrm.2021.100436 34841289
    [Google Scholar]
  43. Sugandh F.N.U. Chandio M. Raveena F.N.U. Kumar L. Karishma F.N.U. Khuwaja S. Memon U.A. Bai K. Kashif M. Varrassi G. Khatri M. Kumar S. Advances in the management of diabetes mellitus: A focus on personalized medicine. Cureus 2023 15 8 e43697 10.7759/cureus.43697 37724233
    [Google Scholar]
  44. Joshi S. Shamanna P. Dharmalingam M. Vadavi A. Keshavamurthy A. Shah L. Mechanick J.I. Digital Twin-Enabled Personalized Nutrition Improves Metabolic Dysfunction-Associated Fatty Liver Disease in Type 2 Diabetes: Results of a 1-Year Randomized Controlled Study. Endocr. Pract. 2023 29 12 960 970 10.1016/j.eprac.2023.08.016 37778441
    [Google Scholar]
  45. Meng X. Wang F. Gao X. Wang B. Xu X. Wang Y. Wang W. Zeng Q. Association of IgG N-glycomics with prevalent and incident type 2 diabetes mellitus from the paradigm of predictive, preventive, and personalized medicine standpoint. EPMA J. 2022 14 1 1 20 10.1007/s13167‑022‑00311‑3 36866157
    [Google Scholar]
  46. Griñán-Ferré C. Bellver-Sanchis A. Guerrero A. Pallàs M. Advancing personalized medicine in neurodegenerative diseases: The role of epigenetics and pharmacoepigenomics in pharmacotherapy. Pharmacol. Res. 2024 205 107247 10.1016/j.phrs.2024.107247 38834164
    [Google Scholar]
  47. Iturria-Medina Y. Carbonell F.M. Evans A.C. Multimodal imaging-based therapeutic fingerprints for optimizing personalized interventions: Application to neurodegeneration. Neuroimage 2018 179 40 50 10.1016/j.neuroimage.2018.06.028 29894824
    [Google Scholar]
  48. Cipolla D. Wu H. Gonda I. Eastman S. Redelmeier T. Chan H.K. Modifying the release properties of liposomes toward personalized medicine. J. Pharm. Sci. 2014 103 6 1851 1862 10.1002/jps.23969 24715635
    [Google Scholar]
  49. Pardeike J. Strohmeier D.M. Schrödl N. Voura C. Gruber M. Khinast J.G. Zimmer A. Nanosuspensions as advanced printing ink for accurate dosing of poorly soluble drugs in personalized medicines. Int. J. Pharm. 2011 420 1 93 100 10.1016/j.ijpharm.2011.08.033 21889582
    [Google Scholar]
  50. Tan Y.J.N. Yong W.P. Kochhar J.S. Khanolkar J. Yao X. Sun Y. Ao C.K. Soh S. On-demand fully customizable drug tablets via 3D printing technology for personalized medicine. J. Control. Release 2020 322 42 52 10.1016/j.jconrel.2020.02.046 32145267
    [Google Scholar]
  51. Wening K. Breitkreutz J. Novel delivery device for monolithical solid oral dosage forms for personalized medicine. Int. J. Pharm. 2010 395 1-2 174 181 10.1016/j.ijpharm.2010.05.036 20635515
    [Google Scholar]
  52. PMC The Scope & Significance of Progress in 2021. 2021 Available From: https://www.personalizedmedicinecoalition.org/Userfiles/PMC-Corporate/file/Personalized_Medicine_at_FDA_The_Scope_Significance_of_Progress_in_2021.pdf
  53. FDA Precision Medicine. 2021 Available From: https://www.fda.gov/medical-devices/in-vitro-diagnostics/precision-medicine
/content/journals/cbio/10.2174/0115748936316656240830080555
Loading
/content/journals/cbio/10.2174/0115748936316656240830080555
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: pharmacogenomics ; Personalized medicine ; real-time monitoring ; 3D printing ; biomarkers
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test