Skip to content
2000
Volume 19, Issue 10
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Background

With the increasing development of biotechnology, many cancer solutions have been proposed nowadays. In recent years, Neo-peptides-based methods have made significant contributions, with an essential prerequisite of bindings between peptides and HLA molecules. However, the binding is hard to predict, and the accuracy is expected to improve further.

Methods

Therefore, we propose the Crossed Feature Correction Network (CFCN) with deep learning method, which can automatically extract and adaptively learn the discriminative features in HLA-peptide binding, in order to make more accurate predictions on HLA-peptide binding tasks. With the fancy structure of encoding and feature extracting process for peptides, as well as the feature fusion process between fine-grained and coarse-grained level, it shows many advantages on given tasks.

Results

The experiment illustrates that CFCN achieves better performances overall, compared with other fancy models in many aspects.

Conclusion

In addition, we also consider to use multi-view learning methods for the feature fusion process, in order to find out further relations among binding features. Eventually, we encapsulate our model as a useful tool for further research on binding tasks.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936299044240202100019
2024-02-16
2024-11-22
Loading full text...

Full text loading...

References

  1. LuoH. YeH. NgH.W. SakkiahS. MendrickD.L. HongH. sNebula, a network-based algorithm to predict binding between human leukocyte antigens and peptides.Sci. Rep.2016613211510.1038/srep32115 27558848
    [Google Scholar]
  2. CaoC. WangJ. KwokD. webTWAS: A resource for disease candidate susceptibility genes identified by transcriptome-wide association study.Nucleic Acids Res.202250D1D1123D113010.1093/nar/gkab957 34669946
    [Google Scholar]
  3. NilssonJ.B. KaabinejadianS. YariH. Accurate prediction of HLA class II antigen presentation across all loci using tailored data acquisition and refined machine learning.Sci. Adv.2023947eadj636710.1126/sciadv.adj6367 38000035
    [Google Scholar]
  4. MeiS. LiF. XiangD. Anthem: A user customised tool for fast and accurate prediction of binding between peptides and HLA class I molecules.Brief. Bioinform.2021225bbaa41510.1093/bib/bbaa415 33454737
    [Google Scholar]
  5. LundegaardC. LundO. BuusS. NielsenM. Major histocompatibility complex class I binding predictions as a tool in epitope discovery.Immunology2010130330931810.1111/j.1365‑2567.2010.03300.x 20518827
    [Google Scholar]
  6. PurcellA.W. RamarathinamS.H. TernetteN. Mass spectrometry–based identification of MHC-bound peptides for immunopeptidomics.Nat. Protoc.20191461687170710.1038/s41596‑019‑0133‑y 31092913
    [Google Scholar]
  7. YuL. YangK. HeX. LiM. GaoL. ZhaY. Repositioning linifanib as a potent anti-necroptosis agent for sepsis.Cell Death Discov.2023915710.1038/s41420‑023‑01351‑y 36765040
    [Google Scholar]
  8. PurcellA.W. McCluskeyJ. RossjohnJ. More than one reason to rethink the use of peptides in vaccine design.Nat. Rev. Drug Discov.20076540441410.1038/nrd2224 17473845
    [Google Scholar]
  9. ChengH. RaoB. LiuL. PepFormer: End-to-End transformer-based siamese network to predict and enhance peptide detectability based on sequence only.Anal. Chem.202193166481649010.1021/acs.analchem.1c00354 33843206
    [Google Scholar]
  10. MeiS. LiF. LeierA. A comprehensive review and performance evaluation of bioinformatics tools for HLA class I peptide-binding prediction.Brief. Bioinform.20202141119113510.1093/bib/bbz051 31204427
    [Google Scholar]
  11. GuptaS. NerliS. Kutti KandyS. MerskyG.L. SgourakisN.G. HLA3DB: Comprehensive annotation of peptide/HLA complexes enables blind structure prediction of T cell epitopes.Nat. Commun.2023141634910.1038/s41467‑023‑42163‑z 37816745
    [Google Scholar]
  12. WangR. JiangY. JinJ. DeepBIO: An automated and interpretable deep-learning platform for high-throughput biological sequence prediction, functional annotation and visualization analysis.Nucleic Acids Res.20235173017302910.1093/nar/gkad055 36796796
    [Google Scholar]
  13. JinJ. YuY. WangR. iDNA-ABF: Multi-scale deep biological language learning model for the interpretable prediction of DNA methylations.Genome Biol.202223121910.1186/s13059‑022‑02780‑1 36253864
    [Google Scholar]
  14. ZengX. WangF. LuoY. Deep generative molecular design reshapes drug discovery.Cell Rep. Med.202231210079410.1016/j.xcrm.2022.100794 36306797
    [Google Scholar]
  15. XuJ. Graph embedding and Gaussian mixture variational autoencoder network for end-to-end analysis of single-cell RNA sequencing data.Cell Rep. Methods202331100382
    [Google Scholar]
  16. LiH.L. PangY.H. LiuB. BioSeq-BLM: A platform for analyzing DNA, RNA and protein sequences based on biological language models.Nucleic Acids Res.20214922e12910.1093/nar/gkab829 34581805
    [Google Scholar]
  17. TangY.J. PangY.H. LiuB. IDP-Seq2Seq: Identification of intrinsically disordered regions based on sequence to sequence learning.Bioinformatics202136215177518610.1093/bioinformatics/btaa667 32702119
    [Google Scholar]
  18. ChenL. YuL. GaoL. Potent antibiotic design via guided search from antibacterial activity evaluations.Bioinformatics2023392btad05910.1093/bioinformatics/btad059 36707990
    [Google Scholar]
  19. 2023 Alzheimer’s disease facts and figures.Alzheimers Dement.20231941598169510.1002/alz.13016 36918389
    [Google Scholar]
  20. HuY. SunJ. ZhangY. rs1990622 variant associates with Alzheimer’s disease and regulates TMEM106B expression in human brain tissues.BMC Med.20211911110.1186/s12916‑020‑01883‑5 33461566
    [Google Scholar]
  21. HuY. ZhangH. LiuB. rs34331204 regulates TSPAN13 expression and contributes to Alzheimer’s disease with sex differences.Brain202014311e9510.1093/brain/awaa302 33175954
    [Google Scholar]
  22. HuY. ZhangY. ZhangH. Mendelian randomization highlights causal association between genetically increased C‐reactive protein levels and reduced Alzheimer’s disease risk.Alzheimers Dement.202218102003200610.1002/alz.12687 35598332
    [Google Scholar]
  23. HuY. ZhangY. ZhangH. Cognitive performance protects against Alzheimer’s disease independently of educational attainment and intelligence.Mol. Psychiatry202227104297430610.1038/s41380‑022‑01695‑4 35840796
    [Google Scholar]
  24. LiuG. LiD. LiZ. PSSMHCpan: A novel PSSM-based software for predicting class I peptide-HLA binding affinity.Gigascience20176511110.1093/gigascience/gix017 28327987
    [Google Scholar]
  25. Bassani-SternbergM. ChongC. GuillaumeP. Deciphering HLA-I motifs across HLA peptidomes improves neo-antigen predictions and identifies allostery regulating HLA specificity.PLOS Comput. Biol.2017138e100572510.1371/journal.pcbi.1005725 28832583
    [Google Scholar]
  26. RammenseeH.G. BachmannJ. EmmerichN.P.N. BachorO.A. StevanovićS. SYFPEITHI: database for MHC ligands and peptide motifs.Immunogenetics1999503-421321910.1007/s002510050595 10602881
    [Google Scholar]
  27. RecheP.A. GluttingJ.P. ReinherzE.L. Prediction of MHC class I binding peptides using profile motifs.Hum. Immunol.200263970170910.1016/S0198‑8859(02)00432‑9 12175724
    [Google Scholar]
  28. ZhangH. LundO. NielsenM. The PickPocket method for predicting binding specificities for receptors based on receptor pocket similarities: Application to MHC-peptide binding.Bioinformatics200925101293129910.1093/bioinformatics/btp137 19297351
    [Google Scholar]
  29. AndreattaM. NielsenM. Gapped sequence alignment using artificial neural networks: Application to the MHC class I system.Bioinformatics201632451151710.1093/bioinformatics/btv639 26515819
    [Google Scholar]
  30. WuJ. WangW. ZhangJ. DeepHLApan: A deep learning approach for neoantigen prediction considering both HLA-peptide binding and immunogenicity.Front. Immunol.201910255910.3389/fimmu.2019.02559 31736974
    [Google Scholar]
  31. ChenJ. ZouQ. LiJ. DeepM6ASeq-EL: Prediction of human N6-methyladenosine (m6A) sites with LSTM and ensemble learning.Front. Comput. Sci.202216216230210.1007/s11704‑020‑0180‑0
    [Google Scholar]
  32. YeY. WangJ. XuY. MATHLA: A robust framework for HLA-peptide binding prediction integrating bidirectional LSTM and multiple head attention mechanism.BMC Bioinformatics2021221710.1186/s12859‑020‑03946‑z 33407098
    [Google Scholar]
  33. LiuZ. CuiY. XiongZ. NasiriA. ZhangA. HuJ. DeepSeqPan, a novel deep convolutional neural network model for pan-specific class I HLA-peptide binding affinity prediction.Sci. Rep.20199179410.1038/s41598‑018‑37214‑1 30692623
    [Google Scholar]
  34. RasmussenM. FenoyE. HarndahlM. Pan-specific prediction of peptide–MHC class I complex stability, a correlate of T cell immunogenicity.J. Immunol.201619741517152410.4049/jimmunol.1600582 27402703
    [Google Scholar]
  35. BhattacharyaR. Prediction of peptide binding to MHC Class I proteins in the age of deep learning.BioRxiv2017154757
    [Google Scholar]
  36. O'DonnellTJ MHCflurry: Open-source class I MHC binding affinity prediction.Cell systems201871129132e410.1016/j.cels.2018.05.014
    [Google Scholar]
  37. HanY. KimD. Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction.BMC Bioinformatics201718158510.1186/s12859‑017‑1997‑x 29281985
    [Google Scholar]
  38. VangY.S. XieX. HLA class I binding prediction via convolutional neural networks.Bioinformatics201733172658266510.1093/bioinformatics/btx264 28444127
    [Google Scholar]
  39. LuoX. ChiW. DengM. Deepprune: Learning efficient and interpretable convolutional networks through weight pruning for predicting dna-protein binding.Front. Genet.201910114510.3389/fgene.2019.01145 31824562
    [Google Scholar]
  40. LuoX. TuX. DingY. GaoG. DengM. Expectation pooling: An effective and interpretable pooling method for predicting DNA–protein binding.Bioinformatics20203651405141210.1093/bioinformatics/btz768 31598637
    [Google Scholar]
  41. KarosieneE. LundegaardC. LundO. NielsenM. NetMHCcons: A consensus method for the major histocompatibility complex class I predictions.Immunogenetics201264317718610.1007/s00251‑011‑0579‑8 22009319
    [Google Scholar]
  42. ZhangC. LiuY. FuH. Ae2-nets: Autoencoder in autoencoder networks.Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition15-20 June 2019Long Beach, CA, USA2019
    [Google Scholar]
  43. DhandaS.K. MahajanS. PaulS. IEDB-AR: Immune epitope database—analysis resource in 2019.Nucleic Acids Res.201947W1W502-610.1093/nar/gkz452 31114900
    [Google Scholar]
  44. NeefjesJ. JongsmaM.L.M. PaulP. BakkeO. Towards a systems understanding of MHC class I and MHC class II antigen presentation.Nat. Rev. Immunol.2011111282383610.1038/nri3084 22076556
    [Google Scholar]
  45. ThomasG. FinneyR. Calculus and Analytic Geometry.Reading, MAAddison-Wesley Publishing1996
    [Google Scholar]
  46. KlineM. Calculus: an intuitive and physical approach.Courier Corporation1998
    [Google Scholar]
  47. ZhangC. CuiY. HanZ. ZhouJ.T. FuH. HuQ. Deep partial multi-view learning.IEEE Trans. Pattern Anal. Mach. Intell.20204432402241510.1109/TPAMI.2020.3037734 33180720
    [Google Scholar]
  48. WangY. PangC. WangY. Retrosynthesis prediction with an interpretable deep-learning framework based on molecular assembly tasks.Nat. Commun.2023141615510.1038/s41467‑023‑41698‑5 37788995
    [Google Scholar]
  49. LiH. LiuB. BioSeq-Diabolo: Biological sequence similarity analysis using Diabolo.PLOS Comput. Biol.2023196e101121410.1371/journal.pcbi.1011214 37339155
    [Google Scholar]
  50. XuC. TaoD. XuC. A survey on multi-view learning.ar Xiv:130456342013
    [Google Scholar]
  51. DaoF.Y. LiuM.L. SuW. AcrPred: A hybrid optimization with enumerated machine learning algorithm to predict Anti-CRISPR proteins.Int. J. Biol. Macromol.202322870671410.1016/j.ijbiomac.2022.12.250 36584777
    [Google Scholar]
  52. DaoFY LvH FullwoodMJ LinH Accurate identification of DNA replication origin by fusing epigenomics and chromatin interaction information.Research 202220222022/978029310.34133/2022/978029336405252
    [Google Scholar]
  53. AoC. YeX. SakuraiT. ZouQ. YuL. m5U-SVM: Identification of RNA 5-methyluridine modification sites based on multi-view features of physicochemical features and distributed representation.BMC Biol.20232119310.1186/s12915‑023‑01596‑0 37095510
    [Google Scholar]
  54. WangY. ZhaiY. DingY. ZouQ. SBSM-Pro: Support bio-sequence machine for proteins.arXiv:2308102752023
    [Google Scholar]
  55. QianY. DingY. ZouQ. GuoF. Multi-view kernel sparse representation for identification of membrane protein types.IEEE/ACM Trans. Comput. Biol. Bioinformatics20232021234124510.1109/TCBB.2022.3191325 35857734
    [Google Scholar]
  56. LiuX. YangH. AiC. DingY. GuoF. TangJ. MVML-MPI: Multi-view multi-label learning for metabolic pathway inference.Brief. Bioinform.2023246bbad393 37930024
    [Google Scholar]
  57. LiangC. WangL. LiuL. ZhangH. GuoF. Multi-view unsupervised feature selection with tensor robust principal component analysis and consensus graph learning.Pattern Recognit.202314110963210.1016/j.patcog.2023.109632
    [Google Scholar]
  58. LiuJ. Multi-view clustering via joint nonnegative matrix factorization.Proceedings of the 2013 SIAM international conference on data mining.2526010.1137/1.9781611972832.28
    [Google Scholar]
  59. KumarA. RaiP. DaumeH. Co-regularized multi-view spectral clustering.Adv. Neural Inf. Process. Syst.20112414131421
    [Google Scholar]
  60. ZengX. XiangH. YuL. Accurate prediction of molecular properties and drug targets using a self-supervised image representation learning framework.Nat. Mach. Intell.20224111004101610.1038/s42256‑022‑00557‑6
    [Google Scholar]
  61. HotellingH. Relations between two sets of variates. Breakthroughs in statistics.Springer199216219010.1007/978‑1‑4612‑4380‑9_14
    [Google Scholar]
  62. AkahoS. A kernel method for canonical correlation analysis.arXiv preprint cs/06090712006
    [Google Scholar]
  63. AndrewG. RamanA. JeffB. KarenL.P. Deep canonical correlation analysis Proceedings of the 30th International Conference on Machine Learning,PMLR124755
    [Google Scholar]
  64. SongJ. LiF. LeierA. PROSPERous: High-throughput prediction of substrate cleavage sites for 90 proteases with improved accuracy.Bioinformatics201834468468710.1093/bioinformatics/btx670 29069280
    [Google Scholar]
  65. AgarapA.F. Deep learning using rectified linear units (relu).ar Xiv:1803083752018
    [Google Scholar]
  66. HeS. YeX. SakuraiT. ZouQ. MRMD3.0: A Python tool and webserver for dimensionality reduction and data visualization via an ensemble strategy.J. Mol. Biol.20234351416811610.1016/j.jmb.2023.168116 37356901
    [Google Scholar]
  67. BradleyA.P. The use of the area under the ROC curve in the evaluation of machine learning algorithms.Pattern Recognit.19973071145115910.1016/S0031‑3203(96)00142‑2
    [Google Scholar]
  68. YanK. LvH. GuoY. PengW. LiuB. sAMPpred-GAT: prediction of antimicrobial peptide by graph attention network and predicted peptide structure.Bioinformatics2023391btac71510.1093/bioinformatics/btac715 36342186
    [Google Scholar]
  69. JinHuang LingC.X. Using AUC and accuracy in evaluating learning algorithms.IEEE Trans. Knowl. Data Eng.200517329931010.1109/TKDE.2005.50
    [Google Scholar]
  70. MatthewsB.W. Comparison of the predicted and observed secondary structure of T4 phage lysozyme.Biochim. Biophys. Acta Protein Struct.1975405244245110.1016/0005‑2795(75)90109‑9 1180967
    [Google Scholar]
  71. ZouX. RenL. CaiP. Accurately identifying hemagglutinin using sequence information and machine learning methods.Front. Med.202310128188010.3389/fmed.2023.1281880 38020152
    [Google Scholar]
  72. ZhuW. YuanS.S. LiJ. HuangC.B. LinH. LiaoB. A first computational frame for recognizing heparin-binding protein.Diagnostics20231314246510.3390/diagnostics13142465 37510209
    [Google Scholar]
  73. LiuB. GaoX. ZhangH. BioSeq-Analysis2.0: An updated platform for analyzing DNA, RNA and protein sequences at sequence level and residue level based on machine learning approaches.Nucleic Acids Res.20194720e12710.1093/nar/gkz740 31504851
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936299044240202100019
Loading
/content/journals/cbio/10.2174/0115748936299044240202100019
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test