Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Background

Human coronaviruses are a large group of viruses that exist widely in nature and multiply through self-replication. Due to its suddenness and variability, it poses a great threat to global human health and is a major problem currently faced by the medical and health fields.

Objective

COVID-19 is the seventh known coronavirus that can infect humans. The main purpose of this paper is to analyze the effective components and action targets of the Longyi Zhengqi formula and Lianhua Qingwen formula, study their mechanism of action in the treatment of new coronavirus pneumonia (new coronavirus pneumonia), compare the similarities and differences of their pharmacological effects, and obtain the pharmacodynamic mechanism of the two traditional Chinese medicine compounds.

Methods

Obtain the effective ingredients and targets of Longyi-Zhengqi Formula and Lianhua-Qingwen Formula from ETCM (Encyclopedia of Traditional Chinese Medicine) and other traditional Chinese medicine databases, use GeneCards database to obtain the relevant targets of COVID-19, and use Cytoscape software to build the component COVID-19 target network of Longyi-Zhengqi Formula and the component COVID-19 target network of Lianhua-Qingwen Formula. STRING was used to construct a protein interaction network and screen key targets. GO (Gene Ontology) was used for enrichment analysis and KEGG (Kyoto Encyclopedia of Genes and Genomes) was used for pathways to find out the targets and pathways related to the treatment of COVID-19.

Results

In the GO enrichment analysis results, there are 106 biological processes, 31 cell localization and 28 molecular functions of the intersection PPI network targets of Longyi-Zhengqi Formula-COVID-19, 224 biological processes, 51 cell localization and 55 molecular functions of the intersection PPI network targets of Lianhua-Qingwen Formula-COVID-19. In the KEGG pathway analysis results, the number of targets of Longyi-Zhengqi Formula on the COVID-19 pathway is 7, and the number of targets of Lianhua-Qingwen Formula on the COVID-19 pathway is 19; In the regulation analysis results, Longyi-Zhengqi Formula achieves the effect of treating COVID-19 by regulating IL-6, and Lianhua-Qingwen Formula achieves the effect of treating pneumonia by regulating TLR4.

Conclusion

This paper explores the mechanism of action of Longyi-Zhengqi Formula and Lianhua-Qingwen Formula in treating COVID-19 based on the method of network pharmacology, and provides a theoretical basis for traditional Chinese medicine to treat sudden diseases caused by human coronavirus in terms of drug targets and disease interactions. It has certain practical significance.

© 2025 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936292599240308102616
2024-03-29
2025-01-19
Loading full text...

Full text loading...

/deliver/fulltext/cbio/20/1/CBIO-20-1-07.html?itemId=/content/journals/cbio/10.2174/0115748936292599240308102616&mimeType=html&fmt=ahah

References

  1. MeulenV. Coronaviruses: A group with unique features.Virus Res.1987719910210.1016/0168‑1702(87)90061‑X
    [Google Scholar]
  2. NovelliA BiancolellaM BorgianiP Analysis of ACE2 genetic variants in 131 Italian SARS-CoV-2 positive patients. 202010.21203/rs.3.rs‑39011/v3
    [Google Scholar]
  3. Aleebrahim-DehkordiE. ReyhanianA. SaberianpourS. Hasanpour-DehkordiA. Acute kidney injury in COVID-19; a review on current knowledge.J. Nephropathol.202094e31e110.34172/jnp.2020.31
    [Google Scholar]
  4. WaqasM. HaiderA. RehmanA. Immunoinformatics and molecular docking studies predicted potential multiepitope-based peptide vaccine and novel compounds against novel SARS-CoV-2 through virtual screening.BioMed Res. Int.2021202112010.1155/2021/1596834 33728324
    [Google Scholar]
  5. SteynA. KeepS. BickertonE. FifeM. The characterization of chIFITMs in avian coronavirus infection in vivo, ex vivo and in vitro.Genes 202011891810.3390/genes11080918 32785186
    [Google Scholar]
  6. TyrrellD.A.J. BynoeM.L. Cultivation of a novel type of common-cold virus in organ cultures.BMJ1965154481467147010.1136/bmj.1.5448.1467 14288084
    [Google Scholar]
  7. WooP.C.Y. LauS.K.P. WongB.H.L. False-positive results in a recombinant severe acute respiratory syndrome-associated coronavirus (SARS-CoV) nucleocapsid enzyme-linked immunosorbent assay due to HCoV-OC43 and HCoV-229E rectified by Western blotting with recombinant SARS-CoV spike polypeptide.J. Clin. Microbiol.200442125885588810.1128/JCM.42.12.5885‑5888.2004 15583332
    [Google Scholar]
  8. DingY. HeL. ZhangQ. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS‐CoV) in SARS patients: Implications for pathogenesis and virus transmission pathways.J. Pathol.2004203262263010.1002/path.1560 15141376
    [Google Scholar]
  9. YapY.L. ZhangX.W. DanchinA. Relationship of SARS-CoV to other pathogenic RNA viruses explored by tetranucleotide usage profiling.BMC Bioinformatics2003414310.1186/1471‑2105‑4‑43 14499005
    [Google Scholar]
  10. SongD. HaG. SerhanW. Development and validation of a rapid immunochromatographic assay for detection of Middle East respiratory syndrome coronavirus antigen in dromedary camels.J. Clin. Microbiol.20155341178118210.1128/JCM.03096‑14 25631809
    [Google Scholar]
  11. MiguelE. PereraR.A.P.M. BaubekovaA. Absence of middle east respiratory syndrome coronavirus in camelids, kazakhstan, 2015.Emerg. Infect. Dis.201622355555710.3201/eid2203.151284 26889787
    [Google Scholar]
  12. LeclercqI. BatéjatC. BurguièreA.M. ManuguerraJ.C. Heat inactivation of the Middle East respiratory syndrome coronavirus.Influenza Other Respir. Viruses20148558558610.1111/irv.12261 25074677
    [Google Scholar]
  13. SchnyderJ.L. de JongH.K. GrobuschM.P. Intradermal immunization—a dose-sparing strategy to combat global shortages of severe acute respiratory syndrome coronavirus 2 vaccines?Clin. Microbiol. Infect.20222816810.1016/j.cmi.2021.08.020 34469811
    [Google Scholar]
  14. CevikM. TateM. LloydO. MaraoloA.E. SchafersJ. HoA. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: A systematic review and meta-analysis.Lancet Microbe202121e13e2210.1016/S2666‑5247(20)30172‑5 33521734
    [Google Scholar]
  15. Domingo-FernándezD. GadiyaY. MubeenS. Modern drug discovery using ethnobotany: A large-scale cross-cultural analysis of traditional medicine reveals common therapeutic uses.iScience202326910772910.1016/j.isci.2023.107729 37701812
    [Google Scholar]
  16. HashimotoR. TamuraT. WatanabeY. Evaluation of broad anti-coronavirus activity of autophagy-related compounds using human airway organoids.Mol. Pharm.20232042276228710.1021/acs.molpharmaceut.3c00114 36946991
    [Google Scholar]
  17. ChenX. WangM. Traditional Chinese medicine during the COVID-19 pandemic: Recent successes and future perspectives.Acup Herb Med20233435735910.1097/HM9.0000000000000084
    [Google Scholar]
  18. LiuH. LuoZ. ChenJ. ZhengH. ZengQ. Treatment progress of cryptozoospermia with Western Medicine and traditional Chinese medicine: A literature review.Health Sci. Rep.202361e101910.1002/hsr2.1019 36582629
    [Google Scholar]
  19. PierceR.P. StevermerJ.J. Disparities in the use of telehealth at the onset of the COVID-19 public health emergency.J. Telemed. Telecare20232913910.1177/1357633X20963893 33081595
    [Google Scholar]
  20. JiangL. AnX. DuanY. The pathological mechanism of the COVID-19 convalescence and its treatment with traditional Chinese medicine.Front. Pharmacol.202313105431210.3389/fphar.2022.1054312 36703736
    [Google Scholar]
  21. JingC. Longhua hospital formulated ” Longyi-Zhengqi Formula” strengthening the body resistance to eliminate pathogenic factors to prevent respiratory infectious diseases.2022Available from: http://www.sh.chinanews.com.cn
    [Google Scholar]
  22. RačkováL. JančinováV. PetríkováM. Mechanism of anti-inflammatory action of liquorice extract and glycyrrhizin.Nat. Prod. Res.200721141234124110.1080/14786410701371280 18075885
    [Google Scholar]
  23. YangR. YuanB.C. MaY.S. ZhouS. LiuY. The anti-inflammatory activity of licorice, a widely used Chinese herb.Pharm. Biol.201755151810.1080/13880209.2016.1225775 27650551
    [Google Scholar]
  24. DamleM. Glycyrrhiza glabra (Liquorice)-a potent medicinal herb.Int. J. Herb. Med.201422132136
    [Google Scholar]
  25. BardhanK.D. CumberlandD.C. DixonR.A. HoldsworthC.D. Clinical trial of deglycyrrhizinised liquorice in gastric ulcer.Gut197819977978210.1136/gut.19.9.779 361512
    [Google Scholar]
  26. WangL. YangR. YuanB. LiuY. LiuC. The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb.Acta Pharm. Sin. B20155431031510.1016/j.apsb.2015.05.005 26579460
    [Google Scholar]
  27. PanlinLi LiliHE Chuyuan Li. Effects of honeysuckle and flos lonicerae on acute oral inflammation. J sun yat-sen univ201655411822
    [Google Scholar]
  28. RahmanA. KangS.C. In vitro control of food-borne and food spoilage bacteria by essential oil and ethanol extracts of Lonicera japonica Thunb.Food Chem.2009116367067510.1016/j.foodchem.2009.03.014
    [Google Scholar]
  29. WangL.Q. Studies on antiviral effect and immunopotentiating activity of Lonicera japonica Thunb. and flos lonicerae in vitro. In: Agricultural University of Henan. Mater thesis2008
    [Google Scholar]
  30. GuoY. LinL. WangY. Chemistry and pharmacology of the herb pair Flos Lonicerae japonicae-Forsythiae fructus.Chin. Med.20151011610.1186/s13020‑015‑0044‑y 26161134
    [Google Scholar]
  31. BingQ. WeiQ. TangY.T. Study on the anti-inflammatory and analgesia function of Fructus forsythia extraction.Zhong Cao Yao1999304335
    [Google Scholar]
  32. ZhouC. LuM. ChengJ. Review on the pharmacological properties of phillyrin.Molecules20222712367010.3390/molecules27123670 35744798
    [Google Scholar]
  33. PanC. ZhouG. ChenW. Protective effect of forsythiaside A on lipopolysaccharide/d-galactosamine-induced liver injury.Int. Immunopharmacol.2015261808510.1016/j.intimp.2015.03.009 25797347
    [Google Scholar]
  34. YuX. YangG. JiangH. Patchouli oil ameliorates acute colitis: A targeted metabolite analysis of 2,4,6-trinitrobenzenesulfonic acid-induced rats.Exp. Ther. Med.20171421184119210.3892/etm.2017.4577 28810577
    [Google Scholar]
  35. Silva-FilhoS.E. WiirzlerL.A.M. CavalcanteH.A.O. Effect of patchouli (Pogostemon cablin) essential oil on in vitro and in vivo leukocytes behavior in acute inflammatory response.Biomed. Pharmacother.2016841697170410.1016/j.biopha.2016.10.084 27847207
    [Google Scholar]
  36. ZhangL. TaoJ. Antioxidant activity of essential oil of Patchouli.Zhongguo Yesheng Zhiwu Ziyuan2016353134
    [Google Scholar]
  37. Ting-TingG Yi-ZheC BangQ Analgesic effect of pogostemon cablin on acetic acid-induced writhing in mice.Animal Husbandry and Feed ence2024
    [Google Scholar]
  38. LiW. WenH.M. CuiX.B. Effective components of rhizoma atractylodis macrocephalae in invigorating spleen.J Nanjing Univ Tradit Chin Med20066366367
    [Google Scholar]
  39. LeeY.P. LeeY.J. LeeS.M. Effect of atractylodes macrocephala on hypertonic stress-induced water channel protein expression in renal collecting duct cells.Evid. Based Complement. Alternat. Med.20122012650809
    [Google Scholar]
  40. Jia-JiaL.U. PharmacyD.O. A GC-MS analysis of volatile components of atractylodes macrocephala koidz and their research of inhibitory activity on five tumor cells.Strait Pharma J2024
    [Google Scholar]
  41. LiL. HeY. WangN. Atractylone in the Atractylodes macrocephala rhizoma essential oil and its anti-inflammatory activity.Molecules20232821734010.3390/molecules28217340 37959758
    [Google Scholar]
  42. XuH.Y. ZhangY.Q. LiuZ.M. ETCM: An encyclopaedia of traditional Chinese medicine.Nucleic Acids Res.201847197698210.1093/nar/gky987 30365030
    [Google Scholar]
  43. KimS. Exploring chemical information in pubchem.Curr. Protoc.202118e21710.1002/cpz1.217 34370395
    [Google Scholar]
  44. WangX. ZhangW. WangM. Mechanism of lianhua-qingwen capsule for the treatment of coronavirus disease 2019(COVID-19) based on network pharmacology and chemical composition research.Mod Trad Chi Med Mat Medica-World Sci Techno2020220931693177
    [Google Scholar]
  45. ZhuZ. QiuN. YiJ. Production and characterization of angiotensin converting enzyme (ACE) inhibitory peptides from apricot (Prunus armeniaca L.) kernel protein hydrolysate.Eur. Food Res. Technol.20102311131910.1007/s00217‑010‑1235‑5
    [Google Scholar]
  46. SalehiB. Sharifi-RadJ. CapanogluE. Cucurbita plants: From farm to industry.Appl. Sci. 2019916338710.3390/app9163387
    [Google Scholar]
  47. ChangH.K. YangH.Y. LeeT.H. Armeniacae semen extract suppresses lipopolysaccharide-induced expressions of cycloosygenase-2 and inducible nitric oxide synthase in mouse BV2 microglial cells.Biol. Pharm. Bull.200528344945410.1248/bpb.28.449 15744067
    [Google Scholar]
  48. YiğitD. YiğitN. MaviA. Antioxidant and antimicrobial activities of bitter and sweet apricot (Prunus armeniaca L.) kernels.Braz. J. Med. Biol. Res.200942434635210.1590/S0100‑879X2009000400006 19330262
    [Google Scholar]
  49. SongZ. JohansenH.K. MoserC. HøibyN. Effects of Chinese medicinal herbs on a rat model of chronic Pseudomonas aeruginosa lung infection.Acta Pathol Microbiol Scand Suppl19961041-635035410.1111/j.1699‑0463.1996.tb00726.x 8703440
    [Google Scholar]
  50. XiaoZ. HaoY. LiuB. QianL. Indirubin and meisoindigo in the treatment of chronic myelogenous leukemia in China.Leuk. Lymphoma20024391763176810.1080/1042819021000006295 12685829
    [Google Scholar]
  51. KarakocaK. OzusaglamM.A. CakmakY.S. ErkulS.K. Antioxidative, antimicrobial and cytotoxic properties of Isatis floribunda Boiss. ex Bornm. extracts.EXCLI J.201312150167 26417224
    [Google Scholar]
  52. BattistelliM. De SanctisR. De BellisR. CucchiariniL. DachàM. GobbiP. Rhodiola rosea as antioxidant in red blood cells: ultrastructural and hemolytic behaviour.Eur. J. Histochem.2005493243254 16216810
    [Google Scholar]
  53. DarbinyanV. AslanyanG. AmroyanE. GabrielyanE. MalmströmC. PanossianA. Clinical trial of Rhodiola rosea L. extract SHR-5 in the treatment of mild to moderate depression.Nord. J. Psychiatry200761534334810.1080/08039480701643290 17990195
    [Google Scholar]
  54. HuX. LinS. YuD. QiuS. ZhangX. MeiR. A preliminary study: The anti-proliferation effect of salidroside on different human cancer cell lines.Cell Biol. Toxicol.201026649950710.1007/s10565‑010‑9159‑1 20309622
    [Google Scholar]
  55. IaremiĭI.N. Grigor’Eva N F.Eksp. Klin. Farmakol.200265657 12596536
    [Google Scholar]
  56. LeeS.Y. LaiF.Y. ShiL.S. ChouY.C. YenI.C. ChangT.C. Rhodiola crenulata extract suppresses hepatic gluconeogenesis via activation of the AMPK pathway.Phytomedicine201522447748610.1016/j.phymed.2015.01.016 25925970
    [Google Scholar]
  57. LiH. WangJ. QuY. XiaoX. Analysis on changes of purgative biopotency in different processed products of rhubarb.Zhongguo Zhongyao Zazhi2012373302304 22568228
    [Google Scholar]
  58. FengS. MeijuanY. YanL. Comparision of the actions on blood stasis of rhubarb with different prepared methods.Pharmacology and Clinics of Chinese Materia Medica2012
    [Google Scholar]
  59. ChenK. WangC.Q. FanY.Q. Lipid-lowering effect of seven traditional Chinese medicine monomers in zebrafish system.Sheng Li Xue Bao20176915560 28217808
    [Google Scholar]
  60. Zhen-QiangQ.I. Hong-ZhenH.U. Xiang-ShengW. Review on molecular and cellular mechanism researches of emodin for treating kidney disease.Global Traditional Chinese Medicine2015
    [Google Scholar]
  61. CaoY.J. PuZ.J. TangY.P. Advances in bio-active constituents, pharmacology and clinical applications of rhubarb.Chin. Med.20171213610.1186/s13020‑017‑0158‑5 29299052
    [Google Scholar]
  62. JiangY.N. MoH.Y. RenH. Effect of emodin lipid nano-microbubble on MAPK signal pathway and inflammation cytokine in AT-II cells by mechanical stretch.Zhong Yao Cai2013366967971 24380287
    [Google Scholar]
  63. SunH. LuoG. XiangZ. CaiX. ChenD. Pharmacokinetics and pharmacodynamics study of rhein treating renal fibrosis based on metabonomics approach.Phytomedicine201623131661167010.1016/j.phymed.2016.10.002 27823631
    [Google Scholar]
  64. LiX. TangQ. MengF. DuP. ChenW. INPUT: An intelligent network pharmacology platform unique for traditional Chinese medicine.Comput. Struct. Biotechnol. J.2022201345135110.1016/j.csbj.2022.03.006 35356545
    [Google Scholar]
  65. StelzerG. RosenR. PlaschkesI. The genecards suite: From gene data mining to disease genome sequence analyses.Curr. Prot. Bioinfo20163013010.1002/cpbi.5
    [Google Scholar]
  66. ZhaoH. Discussion on the network pharmacological mechanism and preliminary evidence of huopo xialing decoction for the treatment of 2019-ncov inflammatory storm by integrating “pathway-target-active component.Mod Trad Chi Med Mat Medica-World Sci Techno20212302536551
    [Google Scholar]
  67. KohlM. WieseS. WarscheidB. Cytoscape: Software for visualization and analysis of biological networks.Methods Mol. Biol.201169629130310.1007/978‑1‑60761‑987‑1_18 21063955
    [Google Scholar]
  68. SzklarczykD. KirschR. KoutrouliM. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest.Nucleic Acids Res.202351D1D638D64610.1093/nar/gkac1000 36370105
    [Google Scholar]
  69. ShermanB.T. HaoM. QiuJ. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update).Nucleic Acids Res.202250W1W216-2110.1093/nar/gkac194 35325185
    [Google Scholar]
  70. HuangD.W. ShermanB.T. LempickiR.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources.Nat. Protoc.200941445710.1038/nprot.2008.211 19131956
    [Google Scholar]
  71. AshburnerM. BallC.A. BlakeJ.A. Gene Ontology: Tool for the unification of biology.Nat. Genet.2000251252910.1038/75556 10802651
    [Google Scholar]
  72. KanehisaM. GotoS. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res200028273010592173
    [Google Scholar]
  73. KanehisaM. Toward understanding the origin and evolution of cellular organisms. Protein Sci2019281947195131441146
    [Google Scholar]
  74. KanehisaM FurumichiM SatoY KEGG for taxonomy-based analysis of pathways and genomes.Nucleic Acids Res202351D587D59236300620
    [Google Scholar]
  75. YuguangW. WenshengQ.I. JiajuM.A. Clinical features and syndrome differentiation of COVID-19.J. Tradit. Chin. Med.20206104281285
    [Google Scholar]
  76. TengP. LiH. BinD. QiuJ. HeG. FanJ. Research progress of atractylodes and their pharmacological effects.China Pharmacy2012233937323734
    [Google Scholar]
  77. XiaZ. Study on the effect of isoliquiritin for rats with COPD based on NF-κB and Nrf2/HO-1 signal pathways.J Sich Trad Chi Med202240014448
    [Google Scholar]
  78. YuanQ. Study on the mechanism of the effect/side effects of licorice and glycyrrhetinic acid based on network pharmacology.Guangdong Chem Ind202249037678
    [Google Scholar]
  79. HuZ. LeiT. GengY. YangQ.I. HouJ. A review on pharmacological activities and preparations of luteolin.Cli J Chi Med20221410141145
    [Google Scholar]
  80. DanC. Study on the anti-inflammatory and analgesic effects of kaempferol and its mechanism.Nanjing University of Chinese Medicine2021
    [Google Scholar]
  81. LappanoR SebastianiA CirilloF The lauric acid-activated signaling prompts apoptosis in cancer cells. Cell Death Discov201731706310.1038/cddiscovery.2017.63
    [Google Scholar]
  82. XiaoL. Mechanism of antiinflammatory action of adenine riboside.Nature Magazine200203185
    [Google Scholar]
  83. XuejiaoH.A.N. NaG. ZhuM. TaoY. Research progress in pharmacological activities and related mechanism of salidroside.Chinese J Biochem Pharma20153501171175
    [Google Scholar]
  84. HangF. Study on TLR4-targeting anti-inflammatory activity and related mechanism of extracts from solanum lyratum thunb.Jilin University2022
    [Google Scholar]
  85. DurstenfeldM.S. HsueP.Y. PelusoM.J. DeeksS.G. Findings from mayo clinic’s post-COVID clinic: PASC phenotypes vary by sex and degree of il-6 elevation.Mayo Clin. Proc.202297343043210.1016/j.mayocp.2022.01.020 35246280
    [Google Scholar]
  86. ZhaoY. KuangM. LiJ. Publisher Correction: SARS-CoV-2 spike protein interacts with and activates TLR4.Cell Res.202131782510.1038/s41422‑021‑00501‑0 33907310
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936292599240308102616
Loading
/content/journals/cbio/10.2174/0115748936292599240308102616
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test