Skip to content
2000
Volume 19, Issue 9
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Computer-aided drug design has an important role in drug development and design. It has become a thriving area of research in the pharmaceutical industry to accelerate the drug discovery process. Deep learning, a subdivision of artificial intelligence, is widely applied to advance new drug development and design opportunities. This article reviews the recent technology that uses deep learning techniques to ameliorate the understanding of drug-target interactions in computer-aided drug discovery based on the prior knowledge acquired from various literature. In general, deep learning models can be trained to predict the binding affinity between the protein-ligand complexes and protein structures or generate protein-ligand complexes in structure-based drug discovery. In other words, artificial neural networks and deep learning algorithms, especially graph convolutional neural networks and generative adversarial networks, can be applied to drug discovery. Graph convolutional neural network effectively captures the interactions and structural information between atoms and molecules, which can be enforced to predict the binding affinity between protein and ligand. Also, the ligand molecules with the desired properties can be generated using generative adversarial networks.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936276510231123121404
2024-11-01
2024-11-26
Loading full text...

Full text loading...

/content/journals/cbio/10.2174/0115748936276510231123121404
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test