Skip to content
2000
Volume 2, Issue 1
  • ISSN: 1872-2083
  • E-ISSN:

Abstract

Rearranged during transfection, RET, is a receptor tyrosine kinase expressed in neural crest derived cell lineages. RET is activated by dimerisation facilitated by its binding to the heterodimeric complex formed by Glial cell-derived neurotrophic factor (GDNF) -family ligand (GFL) and GNDF-family receptor (GFR). Both GDNFs and their co-receptors are a small protein family of four members. RET kinase mediated signaling can lead to survival, cell growth, differentiation, and migration. Pharmaceutically RET is of interest due to its involvement in several disease conditions. Oncogenic RET activation by mutations or rearragements predisposes to cancers like multiple endocrine neoplasia type 2 (A and B) and medullary thyroid carcinoma. Loss-of-function mutations in RET are a strong susceptibility factor for Hirschsprung disease, which is characterized by lack of ganglion cells in gastrointestinal tract. All the GFLs promote neuronal survival and GDNF is one of the most potent neurotrophic factors for dopaminergic neurons. Therefore, the neuroprotective capacity of RET activation to override the apoptotic program in neurodegenerative diseases, like in dying midbrain dopaminergic neurons in Parkinson's disease, is of great interest. This article reviews the recent international patents on modulation of RET kinase activity by small-molecule and peptide-based agonists and antagonists.

Loading

Article metrics loading...

/content/journals/biot/10.2174/187220808783330910
2008-01-01
2024-10-10
Loading full text...

Full text loading...

/content/journals/biot/10.2174/187220808783330910
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test