Skip to content
2000
Volume 5, Issue 1
  • ISSN: 2211-3320
  • E-ISSN: 1874-7647

Abstract

Current advancement in nanotechnology created novel solutions to improve drug delivery and enhance the efficacy of therapeutics for tissue regeneration and disease treatment. Nanomaterials can be designed and fabricated to have biomimetic characteristics and unique properties for controlling cellular functions (e.g. cell adhesion and stem cell differentiation) and delivering therapeutics more effectively. Different nanomaterials, including nanoparticles, nanofibers, nanospheres, and nanocomposites, are highlighted with key examples of in vitro and in vivo work. Specifically for bone regeneration, the use of nano-phase hydroxyapatite has received increased interest as it is naturally present in bone and has osteoinductive properties. Additionally, the use of nanotubes and nanofibers loaded with chondroprotective agents are utilized for cartilage regeneration. In addition to scaffold design, the use of different drugs (e.g. antibiotics, peptides, proteins, and growth factors) and their delivery rate are discussed. This review focuses on nanotechnology enabled innovative patents for targeted drug delivery to specific tissues (i.e. bone and cartilage) and prolonged multi-phase drug release.

Loading

Article metrics loading...

/content/journals/biomeng/10.2174/1874764711205010051
2012-04-01
2025-05-19
Loading full text...

Full text loading...

/content/journals/biomeng/10.2174/1874764711205010051
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test